期刊文献+
共找到527篇文章
< 1 2 27 >
每页显示 20 50 100
Solving elastic wave equations in 2D transversely isotropic media by a weighted Runge-Kutta discontinuous Galerkin method
1
作者 Xi-Jun He Jing-Shuang Li +1 位作者 Xue-Yuan Huang Yan-Jie Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期827-839,共13页
Accurate wave propagation simulation in anisotropic media is important for forward modeling, migration and inversion. In this study, the weighted Runge-Kutta discontinuous Galerkin (RKDG) method is extended to solve t... Accurate wave propagation simulation in anisotropic media is important for forward modeling, migration and inversion. In this study, the weighted Runge-Kutta discontinuous Galerkin (RKDG) method is extended to solve the elastic wave equations in 2D transversely isotropic media. The spatial discretization is based on the numerical flux discontinuous Galerkin scheme. An explicit weighted two-step iterative Runge-Kutta method is used as time-stepping algorithm. The weighted RKDG method has good flexibility and applicability of dealing with undulating geometries and boundary conditions. To verify the correctness and effectiveness of this method, several numerical examples are presented for elastic wave propagations in vertical transversely isotropic and tilted transversely isotropic media. The results show that the weighted RKDG method is promising for solving wave propagation problems in complex anisotropic medium. 展开更多
关键词 discontinuous galerkin method ANISOTROPY Transversely isotropic MODELING
下载PDF
Superconvergence Analysis of the Runge-Kutta Discontinuous Galerkin Method with Upwind-Biased Numerical Flux for Two-Dimensional Linear Hyperbolic Equation 被引量:1
2
作者 Yuan Xu Qiang Zhang 《Communications on Applied Mathematics and Computation》 2022年第1期319-352,共34页
In this paper,we shall establish the superconvergence properties of the Runge-Kutta dis-continuous Galerkin method for solving two-dimensional linear constant hyperbolic equa-tion,where the upwind-biased numerical flu... In this paper,we shall establish the superconvergence properties of the Runge-Kutta dis-continuous Galerkin method for solving two-dimensional linear constant hyperbolic equa-tion,where the upwind-biased numerical flux is used.By suitably defining the correction function and deeply understanding the mechanisms when the spatial derivatives and the correction manipulations are carried out along the same or different directions,we obtain the superconvergence results on the node averages,the numerical fluxes,the cell averages,the solution and the spatial derivatives.The superconvergence properties in space are pre-served as the semi-discrete method,and time discretization solely produces an optimal order error in time.Some numerical experiments also are given. 展开更多
关键词 runge-kutta discontinuous galerkin method Upwind-biased flux Superconvergence analysis Hyperbolic equation Two dimensions
下载PDF
Bound-Preserving Discontinuous Galerkin Methods with Modified Patankar Time Integrations for Chemical Reacting Flows
3
作者 Fangyao Zhu Juntao Huang Yang Yang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期190-217,共28页
In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal e... In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity of the solutions at those points,which can be preserved by the Patankar methods,leading to positive updated numerical cell averages.In addition,we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.Numerical examples are given to demonstrate the good performance of the proposed schemes. 展开更多
关键词 Compressible Euler equations Chemical reacting flows Bound-preserving discontinuous galerkin(DG)method Modified Patankar method
下载PDF
Superconvergence of Direct Discontinuous Galerkin Methods:Eigen-structure Analysis Based on Fourier Approach
4
作者 Xuechun Liu Haijin Wang +1 位作者 Jue Yan Xinghui Zhong 《Communications on Applied Mathematics and Computation》 EI 2024年第1期257-278,共22页
This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis techniq... This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results. 展开更多
关键词 Direct discontinuous galerkin(DDG)method with interface correction Symmetric DDG method SUPERCONVERGENCE Fourier analysis Eigen-structure
下载PDF
High-Order Decoupled and Bound Preserving Local Discontinuous Galerkin Methods for a Class of Chemotaxis Models
5
作者 Wei Zheng Yan Xu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期372-398,共27页
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe... In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving. 展开更多
关键词 Chemotaxis models Local discontinuous galerkin(LDG)scheme Convex splitting method Variant energy quadratization method Scalar auxiliary variable method Spectral deferred correction method
下载PDF
Numerical Investigations on the Resonance Errors of Multiscale Discontinuous Galerkin Methods for One-Dimensional Stationary Schrödinger Equation
6
作者 Bo Dong Wei Wang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期311-324,共14页
In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al... In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers. 展开更多
关键词 discontinuous galerkin(DG)method Multiscale method Resonance errors One-dimensional Schrödinger equation
下载PDF
A Provable Positivity-Preserving Local Discontinuous Galerkin Method for the Viscous and Resistive MHD Equations
7
作者 Mengjiao Jiao Yan Jiang Mengping Zhang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期279-310,共32页
In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the diver... In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes. 展开更多
关键词 Viscous and resistive MHD equations Positivity-preserving discontinuous galerkin(DG)method High order accuracy
下载PDF
A Local Macroscopic Conservative(LoMaC)Low Rank Tensor Method with the Discontinuous Galerkin Method for the Vlasov Dynamics
8
作者 Wei Guo Jannatul Ferdous Ema Jing-Mei Qiu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期550-575,共26页
In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system.... In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system.The LoMaC property refers to the exact local conservation of macroscopic mass,momentum,and energy at the discrete level.The recently developed LoMaC low rank tensor algorithm(arXiv:2207.00518)simultaneously evolves the macroscopic conservation laws of mass,momentum,and energy using the kinetic flux vector splitting;then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables.This paper is a generalization of our previous work,but with DG discretization to take advantage of its compactness and flexibility in handling boundary conditions and its superior accuracy in the long term.The algorithm is developed in a similar fashion as that for a finite difference scheme,by observing that the DG method can be viewed equivalently in a nodal fashion.With the nodal DG method,assuming a tensorized computational grid,one will be able to(i)derive differentiation matrices for different nodal points based on a DG upwind discretization of transport terms,and(ii)define a weighted inner product space based on the nodal DG grid points.The algorithm can be extended to the high dimensional problems by hierarchical Tucker(HT)decomposition of solution tensors and a corresponding conservative projection algorithm.In a similar spirit,the algorithm can be extended to DG methods on nodal points of an unstructured mesh,or to other types of discretization,e.g.,the spectral method in velocity direction.Extensive numerical results are performed to showcase the efficacy of the method. 展开更多
关键词 Hierarchical Tucker(HT)decomposition Conservative SVD Energy conservation discontinuous galerkin(DG)method
下载PDF
Simulations of Compressible Two-Medium Flow by Runge-Kutta Discontinuous Galerkin Methods with the Ghost Fluid Method 被引量:7
9
作者 Jianxian Qiu Tiegang Liu Boo Cheong Khoo 《Communications in Computational Physics》 SCIE 2008年第2期479-504,共26页
The original ghost fluid method (GFM) developed in [13] and the modifiedGFM (MGFM) in [26] have provided a simple and yet flexible way to treat twomediumflow problems. The original GFM and MGFM make the material inter... The original ghost fluid method (GFM) developed in [13] and the modifiedGFM (MGFM) in [26] have provided a simple and yet flexible way to treat twomediumflow problems. The original GFM and MGFM make the material interface"invisible" during computations and the calculations are carried out as for a singlemedium such that its extension to multi-dimensions becomes fairly straightforward.The Runge-Kutta discontinuous Galerkin (RKDG) method for solving hyperbolic conservationlaws is a high order accurate finite element method employing the usefulfeatures from high resolution finite volume schemes, such as the exact or approximateRiemann solvers, TVD Runge-Kutta time discretizations, and limiters. In this paper,we investigate using RKDG finite element methods for two-medium flow simulationsin one and two dimensions in which the moving material interfaces is treated via nonconservativemethods based on the original GFM and MGFM. Numerical results forboth gas-gas and gas-water flows are provided to show the characteristic behaviors ofthese combinations. 展开更多
关键词 runge-kutta discontinuous galerkin method WENO scheme ghost fluid method approximate Riemann problem solver.
原文传递
Runge-Kutta Discontinuous Galerkin Method Using WENO-Type Limiters:Three-Dimensional 被引量:2
10
作者 Jun Zhu Jianxian Qiu 《Communications in Computational Physics》 SCIE 2012年第3期985-1005,共21页
This paper further considers weighted essentially non-oscillatory(WENO)and Hermite weighted essentially non-oscillatory(HWENO)finite volume methods as limiters for Runge-Kutta discontinuous Galerkin(RKDG)methods to so... This paper further considers weighted essentially non-oscillatory(WENO)and Hermite weighted essentially non-oscillatory(HWENO)finite volume methods as limiters for Runge-Kutta discontinuous Galerkin(RKDG)methods to solve problems involving nonlinear hyperbolic conservation laws.The application discussed here is the solution of 3-D problems on unstructured meshes.Our numerical tests again demonstrate this is a robust and high order limiting procedure,which simultaneously achieves high order accuracy and sharp non-oscillatory shock transitions. 展开更多
关键词 runge-kutta discontinuous galerkin method LIMITER WENO HWENO high order limiting procedure
原文传递
A Sub-element Adaptive Shock Capturing Approach for Discontinuous Galerkin Methods 被引量:1
11
作者 Johannes Markert Gregor Gassner Stefanie Walch 《Communications on Applied Mathematics and Computation》 2023年第2期679-721,共43页
In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy o... In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy of low-to-high-order discretizations on this set of data,including a first-order finite volume scheme up to the full-order DG scheme.The dif-ferent DG discretizations are then blended according to sub-element troubled cell indicators,resulting in a final discretization that adaptively blends from low to high order within a single DG element.The goal is to retain as much high-order accuracy as possible,even in simula-tions with very strong shocks,as,e.g.,presented in the Sedov test.The framework retains the locality of the standard DG scheme and is hence well suited for a combination with adaptive mesh refinement and parallel computing.The numerical tests demonstrate the sub-element adaptive behavior of the new shock capturing approach and its high accuracy. 展开更多
关键词 High-order methods discontinuous galerkin spectral element method Finite volume method Shock capturing ASTROPHYSICS Stellar physics
下载PDF
A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
12
作者 曾展宽 陈艳萍 《Acta Mathematica Scientia》 SCIE CSCD 2023年第2期839-854,共16页
In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finit... In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme. 展开更多
关键词 local discontinuous galerkin method time fractional diffusion equations sta-bility CONVERGENCE
下载PDF
An h-Adaptive Runge-Kutta Discontinuous Galerkin Method for Hamilton-Jacobi Equations
13
作者 Hongqiang Zhu Jianxian Qiu 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2013年第4期617-636,共20页
In[35,36],we presented an h-adaptive Runge-Kutta discontinuous Galerkin method using troubled-cell indicators for solving hyperbolic conservation laws.A tree data structure(binary tree in one dimension and quadtree in... In[35,36],we presented an h-adaptive Runge-Kutta discontinuous Galerkin method using troubled-cell indicators for solving hyperbolic conservation laws.A tree data structure(binary tree in one dimension and quadtree in two dimensions)is used to aid storage and neighbor finding.Mesh adaptation is achieved by refining the troubled cells and coarsening the untroubled"children".Extensive numerical tests indicate that the proposed h-adaptive method is capable of saving the computational cost and enhancing the resolution near the discontinuities.In this paper,we apply this h-adaptive method to solve Hamilton-Jacobi equations,with an objective of enhancing the resolution near the discontinuities of the solution derivatives.One-and two-dimensional numerical examples are shown to illustrate the capability of the method. 展开更多
关键词 runge-kutta discontinuous galerkin method h-adaptive method Hamilton-Jacobi equation
原文传递
Fourier Continuation Discontinuous Galerkin Methods for Linear Hyperbolic Problems
14
作者 Kiera van der Sande Daniel Appelö Nathan Albin 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1385-1405,共21页
Fourier continuation(FC)is an approach used to create periodic extensions of non-periodic functions to obtain highly-accurate Fourier expansions.These methods have been used in partial differential equation(PDE)-solve... Fourier continuation(FC)is an approach used to create periodic extensions of non-periodic functions to obtain highly-accurate Fourier expansions.These methods have been used in partial differential equation(PDE)-solvers and have demonstrated high-order convergence and spectrally accurate dispersion relations in numerical experiments.Discontinuous Galerkin(DG)methods are increasingly used for solving PDEs and,as all Galerkin formulations,come with a strong framework for proving the stability and the convergence.Here we propose the use of FC in forming a new basis for the DG framework. 展开更多
关键词 discontinuous galerkin Fourier continuation(FC) High order method
下载PDF
Runge-Kutta Discontinuous Galerkin Method with Front Tracking Method for Solving the Compressible Two-Medium Flow on Unstructured Meshes
15
作者 Haitian Lu Jun Zhu +1 位作者 Chunwu Wang Ning Zhao 《Advances in Applied Mathematics and Mechanics》 SCIE 2017年第1期73-91,共19页
In this paper,we extend using the Runge-Kutta discontinuous Galerkin method together with the front tracking method to simulate the compressible twomedium flow on unstructured meshes.A Riemann problem is constructed i... In this paper,we extend using the Runge-Kutta discontinuous Galerkin method together with the front tracking method to simulate the compressible twomedium flow on unstructured meshes.A Riemann problem is constructed in the normal direction in the material interfacial region,with the goal of obtaining a compact,robust and efficient procedure to track the explicit sharp interface precisely.Extensive numerical tests including the gas-gas and gas-liquid flows are provided to show the proposed methodologies possess the capability of enhancing the resolutions nearby the discontinuities inside of the single medium flow and the interfacial vicinities of the two-medium flow in many occasions. 展开更多
关键词 runge-kutta discontinuous galerkin method front tracking method two-medium flow Riemann problem unstructured mesh
原文传递
A Weighted Runge-Kutta Discontinuous Galerkin Method for 3D Acoustic and Elastic Wave-Field Modeling 被引量:2
16
作者 Xijun He Dinghui Yang Xiao Ma 《Communications in Computational Physics》 SCIE 2020年第6期372-400,共29页
Numerically solving 3D seismic wave equations is a key requirement for forward modeling and inversion.Here,we propose a weighted Runge-Kutta dis-continuous Galerkin(WRKDG)method for 3D acoustic and elastic wave-field ... Numerically solving 3D seismic wave equations is a key requirement for forward modeling and inversion.Here,we propose a weighted Runge-Kutta dis-continuous Galerkin(WRKDG)method for 3D acoustic and elastic wave-field mod-eling.For this method,the second-order seismic wave equations in 3D heteroge-neous anisotropic media are transformed into a first-order hyperbolic system,and then we use a discontinuous Galerkin(DG)solver based on numerical-flux formulations for spatial discretization.The time discretization is based on an implicit di-agonal Runge-Kutta(RK)method and an explicit iterative technique,which avoids solving a large-scale system of linear equations.In the iterative process,we introduce a weighting factor.We investigate the numerical stability criteria of the 3D method in detail for linear and quadratic spatial basis functions.We also present a 3D analysis of numerical dispersion for the full discrete approximation of acoustic equation,which demonstrates that the WRKDG method can efficiently suppress numerical dispersion on coarse grids.Numerical results for several different 3D models including homogeneous and heterogeneous media with isotropic and anisotropic cases show that the 3D WRKDG method can effectively suppress numerical dispersion and provide accurate wave-field information on coarse mesh. 展开更多
关键词 Numerical modeling ANISOTROPY discontinuous galerkin method numerical disper-sion STABILITY
原文传递
Positivity-Preserving Runge-Kutta Discontinuous Galerkin Method on Adaptive Cartesian Grid for Strong Moving Shock 被引量:1
17
作者 Jianming Liu Jianxian Qiu +2 位作者 Mikhail Goman Xinkai Li Meilin Liu 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2016年第1期87-110,共24页
In order to suppress the failure of preserving positivity of density or pres-sure,a positivity-preserving limiter technique coupled with h-adaptive Runge-Kutta discontinuous Galerkin(RKDG)method is developed in this p... In order to suppress the failure of preserving positivity of density or pres-sure,a positivity-preserving limiter technique coupled with h-adaptive Runge-Kutta discontinuous Galerkin(RKDG)method is developed in this paper.Such a method is implemented to simulate flows with the large Mach number,strong shock/obstacle interactions and shock diffractions.The Cartesian grid with ghost cell immersed boundary method for arbitrarily complex geometries is also presented.This ap-proach directly uses the cell solution polynomial of DG finite element space as the interpolation formula.The method is validated by the well documented test ex-amples involving unsteady compressible flows through complex bodies over a large Mach numbers.The numerical results demonstrate the robustness and the versatility of the proposed approach. 展开更多
关键词 discontinuous galerkin method adaptive Cartesian grid positivity-preserving im-mersed boundary method complex geometry
原文传递
The Direct Discontinuous Galerkin Methods with Implicit-Explicit Runge-Kutta Time Marching for Linear Convection-Diffusion Problems 被引量:1
18
作者 Haijin Wang Qiang Zhang 《Communications on Applied Mathematics and Computation》 2022年第1期271-292,共22页
In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear conve... In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear convection-diffusion problems.In the spatial discretization,both the original DDG methods and the refined DDG methods with interface corrections are considered.In the time discretization,the convection term is treated explicitly and the diffusion term implicitly.By the energy method,we show that the corresponding fully discrete schemes are unconditionally stable,in the sense that the time-stepis only required to be upper bounded by a constant which is independent of the mesh size h.Opti-mal error estimate is also obtained by the aid of a special global projection.Numerical experiments are given to verify the stability and accuracy of the proposed schemes. 展开更多
关键词 Direct discontinuous galerkin method Implicit-explicit scheme Stability analysis Energy method Convection-diffusion problem
下载PDF
Stability analysis and a priori error estimate of explicit Runge-Kutta discontinuous Galerkin methods for correlated random walk with density-dependent turning rates
19
作者 LU JianFang SHU Chi-Wang ZHANG MengPing 《Science China Mathematics》 SCIE 2013年第12期2645-2676,共32页
In this paper,we analyze the explicit Runge-Kutta discontinuous Galerkin(RKDG)methods for the semilinear hyperbolic system of a correlated random walk model describing movement of animals and cells in biology.The RKDG... In this paper,we analyze the explicit Runge-Kutta discontinuous Galerkin(RKDG)methods for the semilinear hyperbolic system of a correlated random walk model describing movement of animals and cells in biology.The RKDG methods use a third order explicit total-variation-diminishing Runge-Kutta(TVDRK3)time discretization and upwinding numerical fluxes.By using the energy method,under a standard CourantFriedrichs-Lewy(CFL)condition,we obtain L2stability for general solutions and a priori error estimates when the solutions are smooth enough.The theoretical results are proved for piecewise polynomials with any degree k 1.Finally,since the solutions to this system are non-negative,we discuss a positivity-preserving limiter to preserve positivity without compromising accuracy.Numerical results are provided to demonstrate these RKDG methods. 展开更多
关键词 discontinuous galerkin method explicit runge-kutta method stability error estimates corre-lated random walk positivity-preserving
原文传递
A Well-Balanced Runge-Kutta Discontinuous Galerkin Method for Multilayer ShallowWater Equations with Non-Flat Bottom Topography
20
作者 Nouh Izem Mohammed Seaid 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第3期725-758,共34页
A well-balanced Runge-Kutta discontinuous Galerkin method is presented for the numerical solution of multilayer shallow water equations with mass exchange and non-flat bottom topography.The governing equations are refo... A well-balanced Runge-Kutta discontinuous Galerkin method is presented for the numerical solution of multilayer shallow water equations with mass exchange and non-flat bottom topography.The governing equations are reformulated as a non-linear system of conservation laws with differential source forces and reaction terms.Coupling between theflow layers is accounted for in the system using a set of ex-change relations.The considered well-balanced Runge-Kutta discontinuous Galerkin method is a locally conservativefinite element method whose approximate solutions are discontinuous across the inter-element boundaries.The well-balanced property is achieved using a special discretization of source terms that depends on the nature of hydrostatic solutions along with the Gauss-Lobatto-Legendre nodes for the quadra-ture used in the approximation of source terms.The method can also be viewed as a high-order version of upwindfinite volume solvers and it offers attractive features for the numerical solution of conservation laws for which standardfinite element methods fail.To deal with the source terms we also implement a high-order splitting operator for the time integration.The accuracy of the proposed Runge-Kutta discontinuous Galerkin method is examined for several examples of multilayer free-surfaceflows over bothflat and non-flat beds.The performance of the method is also demonstrated by comparing the results obtained using the proposed method to those obtained using the incompressible hydrostatic Navier-Stokes equations and a well-established kinetic method.The proposed method is also applied to solve a recirculationflow problem in the Strait of Gibraltar. 展开更多
关键词 discontinuous galerkin method well-balanced discretization runge-kutta scheme multilayer shallow water equations free-surfaceflows mass exchange wind-drivenflows strait of Gibraltar
原文传递
上一页 1 2 27 下一页 到第
使用帮助 返回顶部