Models of the coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations submit various critical physical phenomena with a typical equation for optical fibres with ...Models of the coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations submit various critical physical phenomena with a typical equation for optical fibres with linear refraction. In this article, we will presuppose the Compact Finite Difference method with Runge-Kutta of order 4 (explicit) method, which is sixth-order and fourth-order in space and time respectively, to solve coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations. Many methods used to solve coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations are second order in time and need to use extra-technique to rise up to fourth-order as Richardson Extrapolation technique. The scheme obtained is immediately fourth-order in one step. This approach is a conditionally stable method. The conserved quantities and the exact single soliton solution indicate the competence and accuracy of the article’s suggestion schemes. Furthermore, the article discusses the two solitons interaction dynamics.展开更多
In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators...In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators.The existence,uniqueness,and stability of the proposed model are discussed.Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models.Comparative studies with generalized fifth-order Runge-Kutta method are given.Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented.We have showcased the efficiency of the proposed method and garnered robust empirical support for our theoretical findings.展开更多
Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical...Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical system with nilpotent linear part and Z(2)-asymmetry are computed. According to normal forms obtained, universal unfoldings for some degenerate bifurcation cases of codimension 3 and simple global characterizations, are studied.展开更多
In this paper, the Ito-Taylor expansion of stochastic differential equation is briefly introduced. The colored rooted tree theory is applied to derive strong order 1.0 implicit stochastic Runge-Kutta method(SRK). Two ...In this paper, the Ito-Taylor expansion of stochastic differential equation is briefly introduced. The colored rooted tree theory is applied to derive strong order 1.0 implicit stochastic Runge-Kutta method(SRK). Two fully implicit schemes are presented and their stability qualities are discussed. And the numerical report illustrates the better numerical behavior.展开更多
In this paper we present and test a numerical method for computing eigenvalues of 4th order Sturm-Liouville (SL) differential operators on finite intervals with regular boundary conditions. This method is a 4th order ...In this paper we present and test a numerical method for computing eigenvalues of 4th order Sturm-Liouville (SL) differential operators on finite intervals with regular boundary conditions. This method is a 4th order shooting method based on Magnus expansions (MG4) which use MG4 shooting as the integrator. This method is similar to the SLEUTH (Sturm-Liouville Eigenvalues Using Theta Matrices) method of Greenberg and Marletta which uses the 2nd order Pruess method (also known as the MG2 shooting method) for the integrator. This method often achieves near machine precision accuracies, and some comparisons of its performance against the well-known SLEUTH software package are presented.展开更多
We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robus...We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.展开更多
The degradation of 4-chloro-3-methylphenol(PCMC)using zeolite-encapsulated iron(III),nickel(II),and copper(II)complexes of N,N’-disalicylidene-1,2-phenylenediamine as catalysts,in a heterogeneous Fenton-like ...The degradation of 4-chloro-3-methylphenol(PCMC)using zeolite-encapsulated iron(III),nickel(II),and copper(II)complexes of N,N’-disalicylidene-1,2-phenylenediamine as catalysts,in a heterogeneous Fenton-like advanced oxidation process,was studied.The physicochemical properties of the catalysts were determined using powder X-ray diffraction,thermogravimetric analysis,Brunauer–Emmett–Teller surface area analysis,Fourier-transform infrared spectroscopy,elemental analysis,and scanning electron microscopy.The effects of four factors,namely initial H2O2 concentration,catalyst dosage,temperature,and pH,on the degradation of a model organic pollutant were determined.The results show that at low acidic pH,almost complete removal of PCMC was achieved with the iron(III),nickel(II),and copper(II)catalysts after 120 min under the optimum reaction conditions:catalyst dosage 0.1 g,H2O2 concentration 75 mmol/L,initial PCMC concentration 0.35mmol/L,and 50 °C.The reusability of the prepared catalysts in PCMC degradation was also studied and a possible catalyst deactivation mechanism is proposed.The possible intermediate products,degradation pathway,and kinetics of PCMC oxidation were also studied.展开更多
In this paper the Modified Equations of Emden type (MEE), χ+αχχ+βχ 3 is solved numerically by the differential transform method. This technique doesn’t require any discretization, linearization or small perturb...In this paper the Modified Equations of Emden type (MEE), χ+αχχ+βχ 3 is solved numerically by the differential transform method. This technique doesn’t require any discretization, linearization or small perturbations and therefore it reduces significantly the numerical computation. The current results of this paper are in excellent agreement with those provided by Chandrasekar et al. [1] and thereby illustrate the reliability and the performance of the differential transform method. We have also compared the results with the classical Runge-Kutta 4 (RK4) Method.展开更多
It is well known that mono-implicit Runge-Kutta methods have been applied in the efficient numerical solution of initial or boundary value problems of ordinary differential equations. Burrage (1994) has shown that the...It is well known that mono-implicit Runge-Kutta methods have been applied in the efficient numerical solution of initial or boundary value problems of ordinary differential equations. Burrage (1994) has shown that the order of an s-stage monoimplicit Runge-Kutta method is at most s+1 and the stage order is at most 3. In this paper, it is shown that the order of an s-stage mono-implicit Runge-Kutta method being algebraically stable is at most min((s) over tilde, 4), and the stage order together with the optimal B-convergence order is at most min(s, 2), where [GRAPHICS]展开更多
The main results of this paper are as follows: (1) Suppose an s stage Runge-Kutta method is consistent, irreducible, non-confluent and symplectic. Then this method is of order at least 2p + l(1 less than or equal to p...The main results of this paper are as follows: (1) Suppose an s stage Runge-Kutta method is consistent, irreducible, non-confluent and symplectic. Then this method is of order at least 2p + l(1 less than or equal to p less than or equal to s - 1) provided that the simplifying conditions C(p) (or D(p) with non-zero weights) and B(2p + l) hold, where 1 0, 1, 2. (2) Suppose an s stage Runge-Kutta method is consistent, irreducible and non-confluent, and satisfies the simplifying conditions C(p) and D(p) with 0 < p <less than or equal to> s. Then this method is symplectic if and only if either p = s or the nonlinear stability matrix M of the method has an (s - p) x (s - p) chief submatrix (M) over cap = 0. (3) Using the results (1) and (2) as bases, we present a general approach for the construction of symplectic Runge-Kutta methods, and a software has been designed, by means of which, the coefficients of s stage symplectic Runge-Kutta methods satisfying C(p),D(p) and B(2p + l) can be easily computed, where 1 I P less than or equal to s, 0 less than or equal to l less than or equal to 2, s less than or equal to 2p + l less than or equal to 2s.展开更多
将用于研究双原子分子离子XY+解析势能函数的能量自洽法(energy consistent method for ion XY+,ECMI)从三阶推广到五阶,并将双原子分子离子XY+的三阶解析势能函数ECMI(3)推广为五阶的解析势能函数ECMI(5),研究CO+的B2Σ+态和SO+的b4Σ...将用于研究双原子分子离子XY+解析势能函数的能量自洽法(energy consistent method for ion XY+,ECMI)从三阶推广到五阶,并将双原子分子离子XY+的三阶解析势能函数ECMI(3)推广为五阶的解析势能函数ECMI(5),研究CO+的B2Σ+态和SO+的b4Σ-态的解析势能函数.结果表明,CO+的B2Σ+态和SO+的b4Σ-态的新解析势能函数ECMI(5)势与基于实验的RKR数据符合得很好,优于常用的中性双原子分子势能函数Morse势、HMS势和双原子分子离子XY+的ECMI(3)势在这两个离子状态下的表现.不仅如此,ECMI势给出了对原子分子碰撞等诸多研究非常重要的正确理解极限和全程势能数据.展开更多
This paper further considers weighted essentially non-oscillatory(WENO)and Hermite weighted essentially non-oscillatory(HWENO)finite volume methods as limiters for Runge-Kutta discontinuous Galerkin(RKDG)methods to so...This paper further considers weighted essentially non-oscillatory(WENO)and Hermite weighted essentially non-oscillatory(HWENO)finite volume methods as limiters for Runge-Kutta discontinuous Galerkin(RKDG)methods to solve problems involving nonlinear hyperbolic conservation laws.The application discussed here is the solution of 3-D problems on unstructured meshes.Our numerical tests again demonstrate this is a robust and high order limiting procedure,which simultaneously achieves high order accuracy and sharp non-oscillatory shock transitions.展开更多
Current research is concerned with the stability of stochastic logistic equation with Ornstein-Uhlenbeck process. First, this research proves that the stochastic logistic model with Ornstein-Uhlenbeck process has a po...Current research is concerned with the stability of stochastic logistic equation with Ornstein-Uhlenbeck process. First, this research proves that the stochastic logistic model with Ornstein-Uhlenbeck process has a positive solution. After that, it also introduces the sufficient conditions for stochastically stability of stochastic logistic model for cell growth of microorganism in fermentation process for positive equilibrium point by using Lyapunov function. In addition, this research establishes the sufficient conditions for zero solution as mentioned in Appendix A due to the cell growth of microorganism μmax, which cannot be negative in fermentation process. Furthermore, for numerical simulation, current research uses the 4-stage stochastic Runge-Kutta (SRK4) method to show the reality of the results.展开更多
The differential quadrature method has been widely used in scientific and engineering computation.However,for the basic characteristics of time domain differential quadrature method,such as numerical stability and cal...The differential quadrature method has been widely used in scientific and engineering computation.However,for the basic characteristics of time domain differential quadrature method,such as numerical stability and calculation accuracy or order,it is still lack of systematic analysis conclusions.In this paper,according to the principle of differential quadrature method,it has been derived and proved that the weighting coefficients matrix of differential quadrature method meets the important V-transformation feature.Through the equivalence of the differential quadrature method and the implicit Runge-Kutta method,it has been proved that the differential quadrature method is A-stable and s-stage s-order method.On this basis,in order to further improve the accuracy of the time domain differential quadrature method,a class of improved differential quadrature method of s-stage 2s-order has been proposed by using undetermined coefficients method and Pad´e approximations.The numerical results show that the proposed differential quadrature method is more precise than the traditional differential quadrature method.展开更多
In this article, we study the phase-field model of solidification for numerical simulation of dendritic crystal growth that occurs during the casting of metals and alloys. Phase-field model of solidification describes...In this article, we study the phase-field model of solidification for numerical simulation of dendritic crystal growth that occurs during the casting of metals and alloys. Phase-field model of solidification describes the physics of dendritic growth in any material during the process of under cooling. The numerical procedure in this work is based on finite difference scheme for space and the 4th-order Runge-Kutta method for time discretization. The effect of each physical parameter on the shape and growth of dendritic crystal is studied and visualized in detail.展开更多
文摘Models of the coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations submit various critical physical phenomena with a typical equation for optical fibres with linear refraction. In this article, we will presuppose the Compact Finite Difference method with Runge-Kutta of order 4 (explicit) method, which is sixth-order and fourth-order in space and time respectively, to solve coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations. Many methods used to solve coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations are second order in time and need to use extra-technique to rise up to fourth-order as Richardson Extrapolation technique. The scheme obtained is immediately fourth-order in one step. This approach is a conditionally stable method. The conserved quantities and the exact single soliton solution indicate the competence and accuracy of the article’s suggestion schemes. Furthermore, the article discusses the two solitons interaction dynamics.
文摘In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators.The existence,uniqueness,and stability of the proposed model are discussed.Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models.Comparative studies with generalized fifth-order Runge-Kutta method are given.Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented.We have showcased the efficiency of the proposed method and garnered robust empirical support for our theoretical findings.
文摘Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical system with nilpotent linear part and Z(2)-asymmetry are computed. According to normal forms obtained, universal unfoldings for some degenerate bifurcation cases of codimension 3 and simple global characterizations, are studied.
文摘In this paper, the Ito-Taylor expansion of stochastic differential equation is briefly introduced. The colored rooted tree theory is applied to derive strong order 1.0 implicit stochastic Runge-Kutta method(SRK). Two fully implicit schemes are presented and their stability qualities are discussed. And the numerical report illustrates the better numerical behavior.
文摘In this paper we present and test a numerical method for computing eigenvalues of 4th order Sturm-Liouville (SL) differential operators on finite intervals with regular boundary conditions. This method is a 4th order shooting method based on Magnus expansions (MG4) which use MG4 shooting as the integrator. This method is similar to the SLEUTH (Sturm-Liouville Eigenvalues Using Theta Matrices) method of Greenberg and Marletta which uses the 2nd order Pruess method (also known as the MG2 shooting method) for the integrator. This method often achieves near machine precision accuracies, and some comparisons of its performance against the well-known SLEUTH software package are presented.
文摘We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.
基金Leather Industry Development Institute(LIDI),Government of Ethiopia,Addis Ababa,for full financial support for his PhD studies under Twinning Program between Leather Industry Development Institute(LIDI),Addis Ababa University(AAU)and CSIR-Central Leather Research Institute(CLRI)
文摘The degradation of 4-chloro-3-methylphenol(PCMC)using zeolite-encapsulated iron(III),nickel(II),and copper(II)complexes of N,N’-disalicylidene-1,2-phenylenediamine as catalysts,in a heterogeneous Fenton-like advanced oxidation process,was studied.The physicochemical properties of the catalysts were determined using powder X-ray diffraction,thermogravimetric analysis,Brunauer–Emmett–Teller surface area analysis,Fourier-transform infrared spectroscopy,elemental analysis,and scanning electron microscopy.The effects of four factors,namely initial H2O2 concentration,catalyst dosage,temperature,and pH,on the degradation of a model organic pollutant were determined.The results show that at low acidic pH,almost complete removal of PCMC was achieved with the iron(III),nickel(II),and copper(II)catalysts after 120 min under the optimum reaction conditions:catalyst dosage 0.1 g,H2O2 concentration 75 mmol/L,initial PCMC concentration 0.35mmol/L,and 50 °C.The reusability of the prepared catalysts in PCMC degradation was also studied and a possible catalyst deactivation mechanism is proposed.The possible intermediate products,degradation pathway,and kinetics of PCMC oxidation were also studied.
文摘In this paper the Modified Equations of Emden type (MEE), χ+αχχ+βχ 3 is solved numerically by the differential transform method. This technique doesn’t require any discretization, linearization or small perturbations and therefore it reduces significantly the numerical computation. The current results of this paper are in excellent agreement with those provided by Chandrasekar et al. [1] and thereby illustrate the reliability and the performance of the differential transform method. We have also compared the results with the classical Runge-Kutta 4 (RK4) Method.
文摘It is well known that mono-implicit Runge-Kutta methods have been applied in the efficient numerical solution of initial or boundary value problems of ordinary differential equations. Burrage (1994) has shown that the order of an s-stage monoimplicit Runge-Kutta method is at most s+1 and the stage order is at most 3. In this paper, it is shown that the order of an s-stage mono-implicit Runge-Kutta method being algebraically stable is at most min((s) over tilde, 4), and the stage order together with the optimal B-convergence order is at most min(s, 2), where [GRAPHICS]
基金the National Natural Science Foundation of China.
文摘The main results of this paper are as follows: (1) Suppose an s stage Runge-Kutta method is consistent, irreducible, non-confluent and symplectic. Then this method is of order at least 2p + l(1 less than or equal to p less than or equal to s - 1) provided that the simplifying conditions C(p) (or D(p) with non-zero weights) and B(2p + l) hold, where 1 0, 1, 2. (2) Suppose an s stage Runge-Kutta method is consistent, irreducible and non-confluent, and satisfies the simplifying conditions C(p) and D(p) with 0 < p <less than or equal to> s. Then this method is symplectic if and only if either p = s or the nonlinear stability matrix M of the method has an (s - p) x (s - p) chief submatrix (M) over cap = 0. (3) Using the results (1) and (2) as bases, we present a general approach for the construction of symplectic Runge-Kutta methods, and a software has been designed, by means of which, the coefficients of s stage symplectic Runge-Kutta methods satisfying C(p),D(p) and B(2p + l) can be easily computed, where 1 I P less than or equal to s, 0 less than or equal to l less than or equal to 2, s less than or equal to 2p + l less than or equal to 2s.
文摘将用于研究双原子分子离子XY+解析势能函数的能量自洽法(energy consistent method for ion XY+,ECMI)从三阶推广到五阶,并将双原子分子离子XY+的三阶解析势能函数ECMI(3)推广为五阶的解析势能函数ECMI(5),研究CO+的B2Σ+态和SO+的b4Σ-态的解析势能函数.结果表明,CO+的B2Σ+态和SO+的b4Σ-态的新解析势能函数ECMI(5)势与基于实验的RKR数据符合得很好,优于常用的中性双原子分子势能函数Morse势、HMS势和双原子分子离子XY+的ECMI(3)势在这两个离子状态下的表现.不仅如此,ECMI势给出了对原子分子碰撞等诸多研究非常重要的正确理解极限和全程势能数据.
基金The research was partially supported by NSFC grant 10931004,10871093,11002071 and the European project ADIGMA on the development of innovative solution algorithms for aerodynamic simulations.
文摘This paper further considers weighted essentially non-oscillatory(WENO)and Hermite weighted essentially non-oscillatory(HWENO)finite volume methods as limiters for Runge-Kutta discontinuous Galerkin(RKDG)methods to solve problems involving nonlinear hyperbolic conservation laws.The application discussed here is the solution of 3-D problems on unstructured meshes.Our numerical tests again demonstrate this is a robust and high order limiting procedure,which simultaneously achieves high order accuracy and sharp non-oscillatory shock transitions.
文摘Current research is concerned with the stability of stochastic logistic equation with Ornstein-Uhlenbeck process. First, this research proves that the stochastic logistic model with Ornstein-Uhlenbeck process has a positive solution. After that, it also introduces the sufficient conditions for stochastically stability of stochastic logistic model for cell growth of microorganism in fermentation process for positive equilibrium point by using Lyapunov function. In addition, this research establishes the sufficient conditions for zero solution as mentioned in Appendix A due to the cell growth of microorganism μmax, which cannot be negative in fermentation process. Furthermore, for numerical simulation, current research uses the 4-stage stochastic Runge-Kutta (SRK4) method to show the reality of the results.
基金support from the National Natural Science Foundation of China(NSFC)through its grant 51377098.
文摘The differential quadrature method has been widely used in scientific and engineering computation.However,for the basic characteristics of time domain differential quadrature method,such as numerical stability and calculation accuracy or order,it is still lack of systematic analysis conclusions.In this paper,according to the principle of differential quadrature method,it has been derived and proved that the weighting coefficients matrix of differential quadrature method meets the important V-transformation feature.Through the equivalence of the differential quadrature method and the implicit Runge-Kutta method,it has been proved that the differential quadrature method is A-stable and s-stage s-order method.On this basis,in order to further improve the accuracy of the time domain differential quadrature method,a class of improved differential quadrature method of s-stage 2s-order has been proposed by using undetermined coefficients method and Pad´e approximations.The numerical results show that the proposed differential quadrature method is more precise than the traditional differential quadrature method.
文摘In this article, we study the phase-field model of solidification for numerical simulation of dendritic crystal growth that occurs during the casting of metals and alloys. Phase-field model of solidification describes the physics of dendritic growth in any material during the process of under cooling. The numerical procedure in this work is based on finite difference scheme for space and the 4th-order Runge-Kutta method for time discretization. The effect of each physical parameter on the shape and growth of dendritic crystal is studied and visualized in detail.