期刊文献+
共找到753,677篇文章
< 1 2 250 >
每页显示 20 50 100
Stability Analysis and Performance Evaluation of Additive Mixed-Precision Runge-Kutta Methods
1
作者 Ben Burnett Sigal Gottlieb Zachary J.Grant 《Communications on Applied Mathematics and Computation》 EI 2024年第1期705-738,共34页
Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were previously proposed and analyzed.These specially designed methods use reduced precision for the implic... Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were previously proposed and analyzed.These specially designed methods use reduced precision for the implicit computations and full precision for the explicit computations.In this work,we analyze the stability properties of these methods and their sensitivity to the low-precision rounding errors,and demonstrate their performance in terms of accuracy and efficiency.We develop codes in FORTRAN and Julia to solve nonlinear systems of ODEs and PDEs using the mixed-precision additive Runge-Kutta(MP-ARK)methods.The convergence,accuracy,and runtime of these methods are explored.We show that for a given level of accuracy,suitably chosen MP-ARK methods may provide significant reductions in runtime. 展开更多
关键词 Mixed precision runge-kutta methods Additive methods ACCURACY
下载PDF
Stability and Time-Step Constraints of Implicit-Explicit Runge-Kutta Methods for the Linearized Korteweg-de Vries Equation
2
作者 Joseph Hunter Zheng Sun Yulong Xing 《Communications on Applied Mathematics and Computation》 EI 2024年第1期658-687,共30页
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either... This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints. 展开更多
关键词 Linearized Korteweg-de Vries(KdV)equation Implicit-explicit(IMEX)runge-kutta(RK)method STABILITY Courant-Friedrichs-Lewy(CFL)condition Finite difference(FD)method Local discontinuous Galerkin(DG)method
下载PDF
Symplectic partitioned Runge-Kutta method based onthe eighth-order nearly analytic discrete operator and its wavefield simulations 被引量:3
3
作者 张朝元 马啸 +1 位作者 杨磊 宋国杰 《Applied Geophysics》 SCIE CSCD 2014年第1期89-106,117,118,共20页
We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this te... We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this technique uses an eighth-orderaccurate nearly analytic discrete (NAD) operator to discretize high-order spatial differentialoperators and employs a second-order SPRK method to discretize temporal derivatives.The stability criteria and numerical dispersion relations of the eighth-order NSPRK methodare given by a semi-analytical method and are tested by numerical experiments. We alsoshow the differences of the numerical dispersions between the eighth-order NSPRK methodand conventional numerical methods such as the fourth-order NSPRK method, the eighth-order Lax-Wendroff correction (LWC) method and the eighth-order staggered-grid (SG)method. The result shows that the ability of the eighth-order NSPRK method to suppress thenumerical dispersion is obviously superior to that of the conventional numerical methods. Inthe same computational environment, to eliminate visible numerical dispersions, the eighth-order NSPRK is approximately 2.5 times faster than the fourth-order NSPRK and 3.4 timesfaster than the fourth-order SPRK, and the memory requirement is only approximately47.17% of the fourth-order NSPRK method and 49.41% of the fourth-order SPRK method,which indicates the highest computational efficiency. Modeling examples for the two-layermodels such as the heterogeneous and Marmousi models show that the wavefields generatedby the eighth-order NSPRK method are very clear with no visible numerical dispersion.These numerical experiments illustrate that the eighth-order NSPRK method can effectivelysuppress numerical dispersion when coarse grids are adopted. Therefore, this methodcan greatly decrease computer memory requirement and accelerate the forward modelingproductivity. In general, the eighth-order NSPRK method has tremendous potential value forseismic exploration and seismology research. 展开更多
关键词 SYMPLECTIC partitioned runge-kutta method NEARLY ANALYTIC DISCRETE OPERATOR Numerical dispersion Wavefield simulation
下载PDF
CONVERGENCE ANALYSIS OF RUNGE-KUTTA METHODS FOR A CLASS OF RETARDED DIFFERENTIAL ALGEBRAIC SYSTEMS 被引量:4
4
作者 肖飞雁 张诚坚 《Acta Mathematica Scientia》 SCIE CSCD 2010年第1期65-74,共10页
This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. ... This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. A new convergence concept, called DA-convergence, is introduced. The DA-convergence result for the methods is derived. At the end, a numerical example is given to verify the computational effectiveness and the theoretical result. 展开更多
关键词 CONVERGENCE runge-kutta methods Lagrange interpolation retarded dif-ferential algebraic systems
下载PDF
Runge-Kutta method, finite element method, and regular algorithms for Hamiltonian system 被引量:2
5
作者 胡妹芳 陈传淼 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第6期747-760,共14页
The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the ... The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the continuous finite element method (CFEM) belongs to the later. We find and prove the equivalence of one kind of the implicit RK method and the CFEM, give the coefficient table of the CFEM to simplify its computation, propose a new standard to measure algorithms for Hamiltonian systems, and define another class of algorithms --the regular method. Finally, numerical experiments are given to verify the theoretical results. 展开更多
关键词 Hamiltonian system energy conservation SYMPLECTICITY finite elementmethod runge-kutta method
下载PDF
Multi-symplectic Runge-Kutta methods for Landau-Ginzburg-Higgs equation 被引量:2
6
作者 胡伟鹏 邓子辰 +1 位作者 韩松梅 范玮 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第8期1027-1034,共8页
Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic ... Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic theory in the Hamilton space. The multi-symplectic Runge-Kutta method is reviewed, and a semi-implicit scheme with certain discrete conservation laws is constructed to solve the first-order partial differential equations (PDEs) derived from the Landau-Ginzburg-Higgs equation. The numerical re- sults for the soliton solution of the Landau-Ginzburg-Higgs equation are reported, showing that the multi-symplectic Runge-Kutta method is an efficient algorithm with excellent long-time numerical behaviors. 展开更多
关键词 MULTI-SYMPLECTIC Landau-Ginzburg-Higgs equation runge-kutta method conservation law soliton solution
下载PDF
A class of twostep continuity Runge-Kutta methods for solving singular delay differential equations and its convergence 被引量:1
7
作者 Leng Xin Liu Degui +1 位作者 Song Xiaoqiu Chen Lirong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期908-916,共9页
An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditio... An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient. 展开更多
关键词 CONVERGENCE singular delay differential equations two-step continuity runge-kutta methods.
下载PDF
Numerical Stability and Oscillations of Runge-Kutta Methods for Differential Equations with Piecewise Constant Arguments of Advanced Type
8
作者 Wang Qi Ma Fu-ming 《Communications in Mathematical Research》 CSCD 2013年第2期131-142,共12页
For differential equations with piecewise constant arguments of advanced type, numerical stability and oscillations of Runge-Kutta methods are investigated. The necessary and sufficient conditions under which the nume... For differential equations with piecewise constant arguments of advanced type, numerical stability and oscillations of Runge-Kutta methods are investigated. The necessary and sufficient conditions under which the numerical stability region contains the analytic stability region are given. The conditions of oscillations for the Runge-Kutta methods are obtained also. We prove that the Runge-Kutta methods preserve the oscillations of the analytic solution. Moreover, the relationship between stability and oscillations is discussed. Several numerical examples which confirm the results of our analysis are presented. 展开更多
关键词 numerical solution runge-kutta method asymptotic stability OSCILLATION
下载PDF
Three-stage Stiffly Accurate Runge-Kutta Methods for Stiff Stochastic Differential Equations
9
作者 WANG PENG 《Communications in Mathematical Research》 CSCD 2011年第2期105-113,共9页
In this paper we discuss diagonally implicit and semi-implicit methods based on the three-stage stiffly accurate Runge-Kutta methods for solving Stratonovich stochastic differential equations(SDEs).Two methods,a thr... In this paper we discuss diagonally implicit and semi-implicit methods based on the three-stage stiffly accurate Runge-Kutta methods for solving Stratonovich stochastic differential equations(SDEs).Two methods,a three-stage stiffly accurate semi-implicit(SASI3) method and a three-stage stiffly accurate diagonally implicit (SADI3) method,are constructed in this paper.In particular,the truncated random variable is used in the implicit method.The stability properties and numerical results show the effectiveness of these methods in the pathwise approximation of stiff SDEs. 展开更多
关键词 stochastic differential equation runge-kutta method STABILITY stiff accuracy
下载PDF
H-stability of the Runge-Kutta methods with general variable stepsize for system of pantograph equations with two delay terms
10
作者 徐阳 刘明珠 赵景军 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第4期385-387,共3页
This paper deals with H-stability of the Runge-Kutta methods with a general variable stepsize for the system of pantograph equations with two delay terms. It is shown that the Runge-Kutta methods with a regular matrix... This paper deals with H-stability of the Runge-Kutta methods with a general variable stepsize for the system of pantograph equations with two delay terms. It is shown that the Runge-Kutta methods with a regular matrix A are H-stable if and only if the modulus of the stability function at infinity is less than 1. 展开更多
关键词 delay differential equations STABILITY runge-kutta method
下载PDF
Parallel iteration methods of Runge-Kutta methods for delay differential equations
11
作者 丁效华 刘明珠 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2004年第1期77-81,共5页
This paper deals with the parallel diagonal implicit Runge-Kutta methods for solving DDEs with a constant delay. It is shown that the suitable choice of the predictor matrix can guarantee the stability of the methods.... This paper deals with the parallel diagonal implicit Runge-Kutta methods for solving DDEs with a constant delay. It is shown that the suitable choice of the predictor matrix can guarantee the stability of the methods. It is proved that for the suitable selection of the diagonal matrix D, the method based on Radau IIA is δ-convergent, and the estimates for the non-stiff speed and the stiff speed of convergence are given. 展开更多
关键词 runge-kutta methods Parallelism across the steps PDIRK methods
下载PDF
Optimized Runge-Kutta Methods with Automatic Step Size Control for Compressible Computational Fluid Dynamics
12
作者 Hendrik Ranocha Lisandro Dalcin +1 位作者 Matteo Parsani David I.Ketcheson 《Communications on Applied Mathematics and Computation》 2022年第4期1191-1228,共38页
We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusi... We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusing on discontinuous spectral element semidis-cretizations,we design new controllers for existing methods and for some new embedded Runge-Kutta pairs.We demonstrate the importance of choosing adequate controller parameters and provide a means to obtain these in practice.We compare a wide range of error-control-based methods,along with the common approach in which step size con-trol is based on the Courant-Friedrichs-Lewy(CFL)number.The optimized methods give improved performance and naturally adopt a step size close to the maximum stable CFL number at loose tolerances,while additionally providing control of the temporal error at tighter tolerances.The numerical examples include challenging industrial CFD applications. 展开更多
关键词 Explicit runge-kutta methods Step size control Compressible Euler equations Compressible Navier-Stokes equations hp-adaptive spatial discretizations
下载PDF
Algebraic Stability of Multistep Runge-Kutta Methods
13
作者 Li Shoufu(Department of M athematics, Xiangtan University, Hunan, 411105, P.R.China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第3期76-82,共7页
A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta met... A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta methods, especially, for Radau Ⅰ A, Radau Ⅱ A and Gaussian Runge-Kutta methods. 展开更多
关键词 Algebraic stability Multistep runge-kutta methods
下载PDF
A Class of Explicit Parallel Multistep Runge-Kutta Methods
14
作者 Xie Yajun and Liu DeguiBeijing Institute of Computer Application and Simulation Technology P.O.Box. 3929, Beijing 100854, China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1993年第4期64-72,共9页
In this paper, a rather general class of explicit parallel multistep Runge-Kutta methods is constructed for solving initial value problem of ordinary differential equations. Also, the corresponding convergence and sta... In this paper, a rather general class of explicit parallel multistep Runge-Kutta methods is constructed for solving initial value problem of ordinary differential equations. Also, the corresponding convergence and stability are analysed. Several parallel computational formulae are given. The numerical experiments, including accuracy, speedup, and efficiency tests show that the methods are efficient. 展开更多
关键词 runge-kutta method Initial value problem.
下载PDF
Numerical Dispersion Relation of Multi-symplectic Runge-Kutta Methods for Hamiltonian PDEs
15
作者 张然 刘宏宇 张凯 《Northeastern Mathematical Journal》 CSCD 2006年第3期349-356,共8页
Numerical dispersion relation of the multi-symplectic Runge-Kutta (MSRK) method for linear Hamiltonian PDEs is derived in the present paper, which is shown to be a discrete counterpart to that possessed by the diffe... Numerical dispersion relation of the multi-symplectic Runge-Kutta (MSRK) method for linear Hamiltonian PDEs is derived in the present paper, which is shown to be a discrete counterpart to that possessed by the differential equation. This provides further understanding of MSRK methods. However, much still remains to be investigated further. 展开更多
关键词 MULTI-SYMPLECTIC KdV equation partitioned runge-kutta method
下载PDF
Runge-Kutta Method and Bolck by Block Method to Solve Nonlinear Fredholm-Volterra Integral Equation with Continuous Kernel
16
作者 A. M. Al-Bugami J. G. Al-Juaid 《Journal of Applied Mathematics and Physics》 2020年第9期2043-2054,共12页
In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral equation is considered (NF-VIE) with continuous kernel;then we used a numerical method to reduce this type of equations to a sy... In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral equation is considered (NF-VIE) with continuous kernel;then we used a numerical method to reduce this type of equations to a system of nonlinear Volterra integral equations. Runge-Kutta method (RKM) and Bolck by block method (BBM) are used to solve the system of nonlinear Volterra integral equations of the second kind (SNVIEs) with continuous kernel. The error in each case is calculated. 展开更多
关键词 Nonlinear Fredholm-Volterra Integral Equation System of Nonlinear Volterra Integral Equations runge-kutta method Bolck by Block method
下载PDF
Derivation of the Reduction Formula of Sixth Order and Seven Stages Runge-Kutta Method for the Solution of an Ordinary Differential Equation
17
作者 Georgios D. Trikkaliotis Maria Ch. Gousidou-Koutita 《Applied Mathematics》 2022年第4期338-355,共18页
This paper is describing in detail the way we define the equations which give the formulas in the methods Runge-Kutta 6<sup>th</sup> order 7 stages with the incorporated control step size in the numerical ... This paper is describing in detail the way we define the equations which give the formulas in the methods Runge-Kutta 6<sup>th</sup> order 7 stages with the incorporated control step size in the numerical solution of Ordinary Differential Equations (ODE). The purpose of the present work is to construct a system of nonlinear equations and then by solving this system to find the values of all set parameters and finally the reduction formula of the Runge-Kutta (6,7) method (6<sup>th</sup> order and 7 stages) for the solution of an Ordinary Differential Equation (ODE). Since the system of high order conditions required to be solved is complicated, all coefficients are found with respect to 7 free parameters. These free parameters, as well as some others in addition, are adjusted in such a way to furnish more efficient R-K methods. We use the MATLAB software to solve several of the created subsystems for the comparison of our results which have been solved analytically. Some examples for five different choices of the arbitrary values of the systems are presented in this paper. 展开更多
关键词 Initial Value Problem runge-kutta methods Ordinary Differential Equations
下载PDF
Production of the Reduction Formula of Seventh Order Runge-Kutta Method with Step Size Control of an Ordinary Differential Equation
18
作者 Georgios D. Trikkaliotis Maria Ch. Gousidou-Koutita 《Applied Mathematics》 2022年第4期325-337,共13页
The purpose of the present work is to construct a nonlinear equation system (85 × 53) using Butcher’s Table and then by solving this system to find the values of all set parameters and finally the reduction form... The purpose of the present work is to construct a nonlinear equation system (85 × 53) using Butcher’s Table and then by solving this system to find the values of all set parameters and finally the reduction formula of the Runge-Kutta (7,9) method (7<sup>th</sup> order and 9 stages) for the solution of an Ordinary Differential Equation (ODE). Since the system of high order conditions required to be solved is too complicated, we introduce a subsystem from the original system where all coefficients are found with respect to 9 free parameters. These free parameters, as well as some others in addition, are adjusted in such a way to furnish more efficient R-K methods. We use the MATLAB software to solve several of the created subsystems for the comparison of our results which have been solved analytically. 展开更多
关键词 Initial Value Problem runge-kutta methods Ordinary Differential Equations
下载PDF
Dissipativity of Multistep Runge-Kutta Methods for Nonlinear Neutral Delay-Integro-Differential Equations with Constrained Grid
19
作者 Sidi Yang 《Journal of Contemporary Educational Research》 2021年第1期99-107,共9页
This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations.We investigate the dissipativity properties of-algebraically stable ... This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations.We investigate the dissipativity properties of-algebraically stable multistep Runge-Kutta methods with constrained grid.The finite-dimensional and infinite-dimensional dissipativity results of-algebraically stable multistep Runge-Kutta methods are obtained. 展开更多
关键词 DISSIPATIVITY -algebraically stability Nonlinear neutral delay-integro-differential equation Multistep runge-kutta methods
下载PDF
Projected Runge-Kutta methods for constrained Hamiltonian systems 被引量:4
20
作者 Yi WEI Zichen DENG +1 位作者 Qingjun LI Bo WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第8期1077-1094,共18页
Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are establi... Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature. 展开更多
关键词 projected runge-kutta (R-K) method differential-algebraic equation(DAE) constrained Hamiltonian system energy and constraint preservation constraint violation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部