Despite the global attention towards pollution,it remains a significant global threat and challenge for both developed and developing countries.Urbanization and economic development influence different types of pollut...Despite the global attention towards pollution,it remains a significant global threat and challenge for both developed and developing countries.Urbanization and economic development influence different types of pollution.Visual pollution is considered a new phenomenon referring to the impact of existing and growing mainstream pollution which impairs an individual’s ability to enjoy visits or views.Recently,Jordanian cities have expanded in response to urbanization and ongoing development.Irbid City has the second largest population in Jordan after the capital Amman City highest population density in Jordan.In the modern era,Irbid City dramatically increased in population and dimension.The growth of the demographic population has been significant and has led to overpopulation,rapid urbanization,and unresolved problems associated with spatial planning and infrastructures leading to different types of pollution including visual pollution.The study area focuses on the city center with the most crowded population through field visits and actual observations.The study technique is descriptive and analytical,with a focus on meticulous monitoring and a follow-up-based questionnaire which is a tool for the study,involving data collection,classification,presentation,analysis,interpretation,and exploration to identify new facts and generalizations that can help solve current issues of visual pollution.The study provides recommendations for Irbid Municipal to eliminate visual pollution,in parallel with stricter supervision from the municipality during the building process to ensure proper implementation of the new rules,adopting an integrated policy for the city with the rest of the social,political,sensory,cultural,economic,and functional aspects,so that this policy is in the short and long term.展开更多
The Tianshan Mountains of Central Asia,highly sensitive to climate change,has been comprehensively assessed for its ecosystem vulnerability across multiple aspects.However,studies on the region's main river system...The Tianshan Mountains of Central Asia,highly sensitive to climate change,has been comprehensively assessed for its ecosystem vulnerability across multiple aspects.However,studies on the region's main river systems and hydropower resources remain limited.Thus,examining the impact of climate change on the runoff and gross hydropower potential(GHP)of this region is essential for promoting sustainable development and effective management of water and hydropower resources.This study focused on the Kaidu River Basin that is situated above the Dashankou Hydropower Station on the southern slope of the Tianshan Mountains,China.By utilizing an ensemble of bias-corrected global climate models(GCMs)from Coupled Model Intercomparison Project Phase 6(CMIP6)and the Variable Infiltration Capacity(VIC)model coupled with a glacier module(VIC-Glacier),we examined the variations in future runoff and GHP during 2017-2070 under four shared socio-economic pathway(SSP)scenarios(SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5)compared to the baseline period(1985-2016).The findings indicated that precipitation and temperature in the Kaidu River Basin exhibit a general upward trend under the four SSP scenarios,with the fastest rate of increase in precipitation under the SSP2-4.5 scenario and the most significant changes in mean,maximum,and minimum temperatures under the SSP5-8.5 scenario,compared to the baseline period(1980-2016).Future runoff in the basin is projected to decrease,with rates of decline under the SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5 scenarios being 3.09,3.42,7.04,and 7.20 m^(3)/s per decade,respectively.The trends in GHP are consistent with runoff,with rates of decline in GHP under the SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5 scenarios at 507.74,563.33,1158.44,and 1184.52 MW/10a,respectively.Compared to the baseline period(1985-2016),the rates of change in GHP under the SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5 scenarios are-20.66%,-20.93%,-18.91%,and-17.49%,respectively.The Kaidu River Basin will face significant challenges in water and hydropower resources in the future,underscoring the need to adjust water resource management and hydropower planning within the basin.展开更多
[Objective] The characteristic of non-point source pollution of a typical village in Baiyangdian Lake basin was studied.[Method] The discharge of domestic sewage and solid wastes of the typical village was investigate...[Objective] The characteristic of non-point source pollution of a typical village in Baiyangdian Lake basin was studied.[Method] The discharge of domestic sewage and solid wastes of the typical village was investigated,and both pollutant and nutrient element content were monitored,as well as the water quality and quantity of rainfall runoff.[Result] The non-point source pollution of livestock manure was far more serious than the sum of domestic sewage and domestic waste in this village,and the annual emission of total organic carbon(TOC),total nitrogen(TN) and total phosphorus(TP) was 37 794.0,4 102.9 and 1 923.7 kg,respectively.The event mean concentration(EMC)of chemical oxygen demand COD,TN and TP in rainfall runoff was 44.5,78.8,1.3 mg/L,respectively,and annual pollution load was 7.6,13.4 and 0.2 kg/hm2,respectively,while the annual pollution load of COD accounted for 5.1% of standard farmland,and that of TN and TP occupied 4.5% and 0.49% of slope farmland.[Conclusion] Livestock manure was the main source of non-point source pollution in the village and the annual pollution load of non-point source pollution was obtained.展开更多
In order to assess the mercury Hg pollution in urban stormwater runoff in Nanjing 11 rainfall events in the Maqun region of Nanjing circle expressway were monitored and the events mean concentrations EMC of Hg and the...In order to assess the mercury Hg pollution in urban stormwater runoff in Nanjing 11 rainfall events in the Maqun region of Nanjing circle expressway were monitored and the events mean concentrations EMC of Hg and the impact of rainfall characteristics on Hg pollution in runoff were analyzed.Results show that the pollution of different Hg species is serious and total Hg THg dissolved Hg HgD and particulate Hg HgP are found to be in the range of 0.173 to 3.347 0.069 to 0.862 and 0.104 to 2.485μg/L respectively.The average EMC value of THg exceeds the Ⅴ class limitation value of Quality standards of surface water environment GB 3838-2002 of China. Hg in runoff mainly exists in particulate form and the concentrations of Hgre 0.250 to 2.821 μg/L are far more than those of Hg0 0.023 to 0.215 μg/L and Hg2+ 0.026 to 0.359 μg/L . The order of rainfall characteristics impacting on Hg pollution in runoff is dry periods 〉runoff time〉duration of rainfall〉storm intensity〉rainfall.展开更多
Binzhou section of Changshen highway was selected to study the effectiveness of road sweeping in decreasing the pollutant loads of highway runoff.With on-site continuous sampling the discharge rules of Cu Cd Pb and Zn...Binzhou section of Changshen highway was selected to study the effectiveness of road sweeping in decreasing the pollutant loads of highway runoff.With on-site continuous sampling the discharge rules of Cu Cd Pb and Zn are analyzed.The total and dissolved event mean concentrations of Cu Pb and Zn are calculated and the loads of heavy metals attached to particles sampled before and after rainfall are also studied.A test section on highway road was swept in different frequencies during a week and the amount of removed particles was measured.Based on the analysis of highway runoff and road sweeping a prediction equation is established to calculate the pollution control efficiency of the sweeping measure and the results indicate that the 1 time/week road sweeping method can remove 47.93% of dissolved Cu 46.87% of Pb and 44.21% of Zn.展开更多
In order to improve the pollution control effect of nitrogen phosphorus and heavy metals in stormwater runoff by using the constructed wetlands factors such as medium plants pretreatments etc.that may influence the re...In order to improve the pollution control effect of nitrogen phosphorus and heavy metals in stormwater runoff by using the constructed wetlands factors such as medium plants pretreatments etc.that may influence the removal efficiency are discussed based on the current studies. The pollution control effect can be enhanced by the improvement of the design methods the components and management of constructed wetlands.The design methods aimed at controlling the stormwater runoff should be based on the hydrological data accumulated for years.The development of novel medium and the selection of plants i.e. flood-tolerant and economical should be considered in advance. The management of constructed wetlands should be enhanced and the database of the stormwater in wetlands should be built.The discussion above should be effective in improving the pollution control effect in stormwater runoff by applying constructed wetlands.展开更多
Storm runoff pollution process was investigated in an urban catchment with an area of 1.3 km^2 in Wuhan City of China. The results indicate that the pollutant concentration peaks preceded the flow peaks in all of 8 mo...Storm runoff pollution process was investigated in an urban catchment with an area of 1.3 km^2 in Wuhan City of China. The results indicate that the pollutant concentration peaks preceded the flow peaks in all of 8 monitored storm events. The intervals between pollution peak and flow peak were shorter in the rain events with higher intensity in the initial period than those with lower intensity. The fractions of pollution load transported by the first 30% of runoff volume (FF30) were 52.2%-72.1% for total suspended solids (TSS), 53.0%-65.3% for chemical oxygen demand (COD), 40.4%-50.6% for total nitrogen (TN), and 45.8%-63.2% for total phosphorus (TP), respectively. Runoff pollution was positively related to non-raining days before the rainfall. Intercepting the first 30% of runoff volume can remove 62.4% of TSS load, 59.4% of COD load, 46.8% of TN load, and 54.1% of TP load, respectively, according to all the storm events. It is suggested that controlling the first flush is a critical measure in reduction of urban stormwater pollution.展开更多
In this article,alkali lignin separated from paper pulp waste was grafted into a novel copolymer LSAA (a copolymer of lignin,starch, acrylamide,and acrylic acid).Its practical application effect and environmental safe...In this article,alkali lignin separated from paper pulp waste was grafted into a novel copolymer LSAA (a copolymer of lignin,starch, acrylamide,and acrylic acid).Its practical application effect and environmental safety were studied.The results of field simulation experiment indicated that the application of LSAA significantly affected the output of the runoff and pollutants.The runoff quantity was decreased by 16.67%-47.00%and the loads of total suspended solids (TSS),chemical oxygen demand (COD),total nit...展开更多
For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be ev...For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.展开更多
[Objective] The aim was to analyze the pollution characteristics of surface runoff in Zhenjiang City.[Method] On July 4 and August 16,2010,surface runoff samples were collected in different rainfall durations in Zhenj...[Objective] The aim was to analyze the pollution characteristics of surface runoff in Zhenjiang City.[Method] On July 4 and August 16,2010,surface runoff samples were collected in different rainfall durations in Zhenjiang City,and the variation characteristics of suspended substance (SS),chemical oxygen demand (CODCr),ammonia nitrogen (NH3-N) and total phosphorus (TP) in surface runoff were analyzed.[Result] With the increase of rainfall duration,SS concentration in surface runoff of Zhenjiang City on July 4 and August 16,2010 went up firstly and then went down,with the maximum concentration of 1 240 and 160mg/L,respectively,and the decreasing rang of SS concentration in the late stage of rainfall on July 4 was obviously greater than that of August 16 due to stronger rainfall on July 4.The general variation of CODCr was similar to that of SS concentration,and the change range of CODCr on July 4 (32-212mg/L) was larger than that of August 16 (13-53mg/L).In addition,the variation trends of NH3-N and TP concentration were similar,namely they increased firstly and then reduced rapidly,and the decreasing range of NH3-N and TP concentration was greater than that of SS concentration in the late stage of rainfall.[Conclusion] The research results could provide references for the study on water quality variation characteristics and treatment of surface runoff.展开更多
Urbanization is the dominant form of land-use change in terms of impacts on water quality, hydrology, physical proper- ties of watersheds and their nonpoint source (NPS) pollution po- tential at present. Urbanization ...Urbanization is the dominant form of land-use change in terms of impacts on water quality, hydrology, physical proper- ties of watersheds and their nonpoint source (NPS) pollution po- tential at present. Urbanization has changed the source, process and sink of urban NPS pollution, especially raised the pollution load of urban runoff NPS in receiving water. Urban runoff pollu- tion is a hot spot of research on NPS. This paper analyzed type, source and harm of the NPS pollutants of urban runoff and its influence on the receiving water. Through estimating NPS pollu- tion load of urban runoff and summarizing the law and character- istics of urban runoff NPS systemically, study on management and control of urban runoff NPS pollution was focused on the applica- tion of BMPs (best management practices). It is a fresh method- ology that management and control on NPS pollution from urban surface runoff was analyzed by methods of landscape ecology, environmental economics and environmental management. The paper provided a scientific reference for mitigating urban water environment pressure and an effective method for management and control of NPS pollution from urban surface runoff..展开更多
Stormwater runoff in rural townships has a high potential for water quality impairment but little information is available on strormwater runoff pollution from rural townships.To investigate the characteristics of run...Stormwater runoff in rural townships has a high potential for water quality impairment but little information is available on strormwater runoff pollution from rural townships.To investigate the characteristics of runoff pollution in a rural township,a catchment(2.32 ha) in Linshan Township,Sichuan,China was selected to examine runoff and quality parameters including precipitation,flow rate,and total nitrogen(TN),dissolved nitrogen(DN),total phosphorus(TP),dissolved phosphorus(DP),particulate phosphorus(PP),chemical oxygen demand(COD) and suspended solid(SS) in 12 rainfall events occurring between June 2006 and July 2007.Results show that the annual pollutant loads were 47.17 kg ha-1 for TN,6.64 kg ha-1 for TP,1186 kg ha-1 for COD,and 4297 kg ha-1 for SS.DN and PP were the main forms of nitrogen and phosphorus in stormwater runoff.TP,COD and SS showed medium mass first flushes,in which nearly 40% of the total pollutant masses were transported by the first 30% of total flow volume.The peak of pollutant concentration appeared before the peak of runoff due to the first flush of accumulative pollutants in impervious areas and drainage ditches.The EMC values of TN,TP,DN and PP were negatively correlated to the maximum rainfall intensity,precipitation,total flow volume,and runoff duration(P<0.05,n=12),while EMC of COD and SS were not related to any rainfall characteristics.The FF30(FF,First Flush) for TN,TP,COD and SS were positively correlated to the maximum rainfall intensity(P<0.05,n=12),and TP was also positively correlated to the average rainfall intensity(P<0.05,n=12),indicating that the magnitude of first flush increased with the rainfall intensity in the Linshan Township.展开更多
Taking surface runoff of Coastal Highway in Liaoning Province as research object,this paper analyzed water quality characteristics of runoff and flow rules of pollutants. It proposed using constructed wetland treatmen...Taking surface runoff of Coastal Highway in Liaoning Province as research object,this paper analyzed water quality characteristics of runoff and flow rules of pollutants. It proposed using constructed wetland treatment technique in the drainage system from the perspective of effectively removing major pollutants. Using the constructed wetland k- C* model and relevant experience,parameters of constructed wetland can be obtained. The basic model is as follows: constructed wetland lies in two sides of the road,and surface runoff sewage is collected and treated separately with 1 km road section as the collection unit. The wetland area in one side is 191. 6 m2,average water depth is 0. 5 m,wetland width is 8 m,and wetland length is 24 m.展开更多
Taking a reservoir in South China as an example, we use rainfall-runoff unit hydrograph method to analyze the time changing process of surface runoff inflow, which generated by typical design rainfall. On the basis of...Taking a reservoir in South China as an example, we use rainfall-runoff unit hydrograph method to analyze the time changing process of surface runoff inflow, which generated by typical design rainfall. On the basis of time series data of flow and water quality in control section of the main rivers in Xili Reservoir, we establish mathematical response relation between non-point source pollutants flux, such as flux of COD, flux of NH3-H, in catchment area of control section and runoff. Then we simulate the time dynamic change progress of non-point source pollution load which generate with the initial stage runoff that generated by design rainfall and flow into reservoir. It can provide technical parameters for the design of non-point source which generate from early runoff treatment project.展开更多
The operating capacity of the Abidjan’s groundwater became insufficient. The deficit in drinking water resources in the District of Abidjan remains the major concern of the decision maker. The Aghien lagoon stands as...The operating capacity of the Abidjan’s groundwater became insufficient. The deficit in drinking water resources in the District of Abidjan remains the major concern of the decision maker. The Aghien lagoon stands as one of the most interesting alternatives. However, studies show the levels of pollutions of this resource without lighting out on the causes and sources of these pollutions. The present study extends over the entire catchment of the Aghien lagoon which reveals the presence of urban areas and agricultural activity areas. This raises real concerns for the Ivorian authorities. This study suggests making cartography of the risk levels of pollution on the Aghien lagoon by the surface runoff on the watershed to enlighten the decision-makers on the possible measures to be taken for the protection of this resource. It emerges from it that the risk of contamination of the lagoon is very likely. Agricultural and domestic best practices inside the pouring pond are compulsory to fight against the pollutions of this resource.展开更多
An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l...An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.展开更多
To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environment...To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environmental processing applications due to their exceptionally high surface areas,large pore sizes,and enough pore volumes.These properties might enhance the performance of materials concerning adsorption/catalysis capability,durability,and stability.In this review,we enumerate the ordered mesoporous materials as adsorbents/catalysts and their modifications in water pollution treatment from the past decade,including heavy metals(Hg^(2+),Pb^(2+),Cd^(2+),Cr^(6+),etc.),toxic anions(nitrate,phosphate,fluoride,etc.),and organic contaminants(organic dyes,antibiotics,etc.).These contributions demonstrate a deep understanding of the synergistic effect between the incorporated framework and homogeneous active centers.Besides,the challenges and perspectives of the future developments of ordered mesoporous materials in wastewater treatment are proposed.This work provides a theoretical basis and complete summary for the application of ordered mesoporous materials in the removal of contaminants from aqueous solutions.展开更多
Mercury is a threatening pollutant in food,herein,we developed a Tb^(3+)-nucleic acid probe-based label-free assay for mix-and-read,rapid detection of mercury pollution.The assay utilized the feature of light-up fluor...Mercury is a threatening pollutant in food,herein,we developed a Tb^(3+)-nucleic acid probe-based label-free assay for mix-and-read,rapid detection of mercury pollution.The assay utilized the feature of light-up fluorescence of terbium ions(Tb^(3+))via binding with single-strand DNA.Mercury ion,Hg^(2+)induced thymine(T)-rich DNA strand to form a double-strand structure(T-Hg^(2+)-T),thus leading to fluorescence reduction.Based on the principle,Hg^(2+)can be quantified based on the fluorescence of Tb^(3+),the limit of detection was 0.0689μmol/L and the linear range was 0.1-6.0μmol/L.Due to the specificity of T-Hg^(2+)-T artificial base pair,the assay could distinguish Hg^(2+)from other metal ions.The recovery rate was ranged in 98.71%-101.34%for detecting mercury pollution in three food samples.The assay is low-cost,separation-free and mix-to-read,thus was a competitive tool for detection of mercury pollution to ensure food safety.展开更多
With the control of point source pollution in Dianchi Lake basin, and the expansion of Kunming city, non-point source pollution has become the main source pollution of urban water environment and Dianchi Lake. To reve...With the control of point source pollution in Dianchi Lake basin, and the expansion of Kunming city, non-point source pollution has become the main source pollution of urban water environment and Dianchi Lake. To reveal the nitrogen pollution characteristics in watershed, this research selected key monitoring points and sections at Baoxiang river basin in rainy season which is the peak transported time of non-point source pollution, the nitrogen and hydrological indicators are monitored systematically. The different forms of nitrogen are analyzed, the pollution load of nitrogen are calculated and studied at cardinal sections; combined with the literature data, we compared the water nitrogen characteristics of Dianchi basin and Taihu basin, the main results are as follows:(1) In summer, water nitrogen form of Baoxiang river in the Caohe area is dominated by nitrate nitrogen, while in other areas it is dominated by ammonia nitrogen which is accounted for 31%-50% of total nitrogen;(2) The water pollution loads of Baoxiang river tended to increase from upstream to downstream, from June to August the total nitrogen pollution mainly comes from urban areas and the pollution load is 166.408 t;(3) In Dianchi Lake watershed and Taihu Lake watershed nitrogen concentration of inflow river is higher than that of the lake, nitrate nitrogen concentration between inflow river and lake shows a little difference, while ammonia nitrogen concentration of inflow river is higher than that of the lake. The results can provide the theoretical basis for nonpoint source pollution control and urban water environment planning and improvement in Dianchi Lake Basin.展开更多
The petroleum industry is a significant source of anthropogenic volatile organic compounds(VOCs),but up to now,its exact impact on urban VOCs and ozone(O_(3))remains unclear.This study conducted year-long VOC ob-serva...The petroleum industry is a significant source of anthropogenic volatile organic compounds(VOCs),but up to now,its exact impact on urban VOCs and ozone(O_(3))remains unclear.This study conducted year-long VOC ob-servations in Dongying,China,a petroleum industrial region.The VOCs from the petroleum industry(oil and gas volatilization and petrochemical production)were identified by employing the positive matrix factorization model,and their contribution to O_(3) formation was quantitatively evaluated using an observation-based chemical box model.The observed annual average concentration of VOCs was 68.6±63.5 ppbv,with a maximum daily av-erage of 335.3 ppbv.The petroleum industry accounted for 66.5%of total VOCs,contributing 54.9%from oil and gas evaporation and 11.6%from petrochemical production.Model results indicated that VOCs from the petroleum industry contributed to 31%of net O_(3) production,with 21.3%and 34.2%contributions to HO_(2)+NO and RO_(2)+NO pathways,respectively.The larger impact on the RO_(2) pathway is primarily due to the fact that OH+VOCs ac-count for 86.9%of the primary source of RO_(2).This study highlights the critical role of controlling VOCs from the petroleum industry in urban O_(3) pollution,especially those from previously overlooked low-reactivity alkanes.展开更多
文摘Despite the global attention towards pollution,it remains a significant global threat and challenge for both developed and developing countries.Urbanization and economic development influence different types of pollution.Visual pollution is considered a new phenomenon referring to the impact of existing and growing mainstream pollution which impairs an individual’s ability to enjoy visits or views.Recently,Jordanian cities have expanded in response to urbanization and ongoing development.Irbid City has the second largest population in Jordan after the capital Amman City highest population density in Jordan.In the modern era,Irbid City dramatically increased in population and dimension.The growth of the demographic population has been significant and has led to overpopulation,rapid urbanization,and unresolved problems associated with spatial planning and infrastructures leading to different types of pollution including visual pollution.The study area focuses on the city center with the most crowded population through field visits and actual observations.The study technique is descriptive and analytical,with a focus on meticulous monitoring and a follow-up-based questionnaire which is a tool for the study,involving data collection,classification,presentation,analysis,interpretation,and exploration to identify new facts and generalizations that can help solve current issues of visual pollution.The study provides recommendations for Irbid Municipal to eliminate visual pollution,in parallel with stricter supervision from the municipality during the building process to ensure proper implementation of the new rules,adopting an integrated policy for the city with the rest of the social,political,sensory,cultural,economic,and functional aspects,so that this policy is in the short and long term.
基金funded by the National Natural Science Foundation of China(42067062).
文摘The Tianshan Mountains of Central Asia,highly sensitive to climate change,has been comprehensively assessed for its ecosystem vulnerability across multiple aspects.However,studies on the region's main river systems and hydropower resources remain limited.Thus,examining the impact of climate change on the runoff and gross hydropower potential(GHP)of this region is essential for promoting sustainable development and effective management of water and hydropower resources.This study focused on the Kaidu River Basin that is situated above the Dashankou Hydropower Station on the southern slope of the Tianshan Mountains,China.By utilizing an ensemble of bias-corrected global climate models(GCMs)from Coupled Model Intercomparison Project Phase 6(CMIP6)and the Variable Infiltration Capacity(VIC)model coupled with a glacier module(VIC-Glacier),we examined the variations in future runoff and GHP during 2017-2070 under four shared socio-economic pathway(SSP)scenarios(SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5)compared to the baseline period(1985-2016).The findings indicated that precipitation and temperature in the Kaidu River Basin exhibit a general upward trend under the four SSP scenarios,with the fastest rate of increase in precipitation under the SSP2-4.5 scenario and the most significant changes in mean,maximum,and minimum temperatures under the SSP5-8.5 scenario,compared to the baseline period(1980-2016).Future runoff in the basin is projected to decrease,with rates of decline under the SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5 scenarios being 3.09,3.42,7.04,and 7.20 m^(3)/s per decade,respectively.The trends in GHP are consistent with runoff,with rates of decline in GHP under the SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5 scenarios at 507.74,563.33,1158.44,and 1184.52 MW/10a,respectively.Compared to the baseline period(1985-2016),the rates of change in GHP under the SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5 scenarios are-20.66%,-20.93%,-18.91%,and-17.49%,respectively.The Kaidu River Basin will face significant challenges in water and hydropower resources in the future,underscoring the need to adjust water resource management and hydropower planning within the basin.
基金Supported by Major Projects of National Water Pollution Control and Management (2008ZX07209-007)
文摘[Objective] The characteristic of non-point source pollution of a typical village in Baiyangdian Lake basin was studied.[Method] The discharge of domestic sewage and solid wastes of the typical village was investigated,and both pollutant and nutrient element content were monitored,as well as the water quality and quantity of rainfall runoff.[Result] The non-point source pollution of livestock manure was far more serious than the sum of domestic sewage and domestic waste in this village,and the annual emission of total organic carbon(TOC),total nitrogen(TN) and total phosphorus(TP) was 37 794.0,4 102.9 and 1 923.7 kg,respectively.The event mean concentration(EMC)of chemical oxygen demand COD,TN and TP in rainfall runoff was 44.5,78.8,1.3 mg/L,respectively,and annual pollution load was 7.6,13.4 and 0.2 kg/hm2,respectively,while the annual pollution load of COD accounted for 5.1% of standard farmland,and that of TN and TP occupied 4.5% and 0.49% of slope farmland.[Conclusion] Livestock manure was the main source of non-point source pollution in the village and the annual pollution load of non-point source pollution was obtained.
基金The Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In order to assess the mercury Hg pollution in urban stormwater runoff in Nanjing 11 rainfall events in the Maqun region of Nanjing circle expressway were monitored and the events mean concentrations EMC of Hg and the impact of rainfall characteristics on Hg pollution in runoff were analyzed.Results show that the pollution of different Hg species is serious and total Hg THg dissolved Hg HgD and particulate Hg HgP are found to be in the range of 0.173 to 3.347 0.069 to 0.862 and 0.104 to 2.485μg/L respectively.The average EMC value of THg exceeds the Ⅴ class limitation value of Quality standards of surface water environment GB 3838-2002 of China. Hg in runoff mainly exists in particulate form and the concentrations of Hgre 0.250 to 2.821 μg/L are far more than those of Hg0 0.023 to 0.215 μg/L and Hg2+ 0.026 to 0.359 μg/L . The order of rainfall characteristics impacting on Hg pollution in runoff is dry periods 〉runoff time〉duration of rainfall〉storm intensity〉rainfall.
基金The National Science and Technology Major Project of China(No.2008ZX07010-008-04)
文摘Binzhou section of Changshen highway was selected to study the effectiveness of road sweeping in decreasing the pollutant loads of highway runoff.With on-site continuous sampling the discharge rules of Cu Cd Pb and Zn are analyzed.The total and dissolved event mean concentrations of Cu Pb and Zn are calculated and the loads of heavy metals attached to particles sampled before and after rainfall are also studied.A test section on highway road was swept in different frequencies during a week and the amount of removed particles was measured.Based on the analysis of highway runoff and road sweeping a prediction equation is established to calculate the pollution control efficiency of the sweeping measure and the results indicate that the 1 time/week road sweeping method can remove 47.93% of dissolved Cu 46.87% of Pb and 44.21% of Zn.
基金The National Science and Technology Major Project of China(No.2010ZX07320-002)the National Natural Science Foun dation of China(No.51308032)the Research Funds of Beijing University of Civil Engineering and Architecture(No.101200902)
文摘In order to improve the pollution control effect of nitrogen phosphorus and heavy metals in stormwater runoff by using the constructed wetlands factors such as medium plants pretreatments etc.that may influence the removal efficiency are discussed based on the current studies. The pollution control effect can be enhanced by the improvement of the design methods the components and management of constructed wetlands.The design methods aimed at controlling the stormwater runoff should be based on the hydrological data accumulated for years.The development of novel medium and the selection of plants i.e. flood-tolerant and economical should be considered in advance. The management of constructed wetlands should be enhanced and the database of the stormwater in wetlands should be built.The discussion above should be effective in improving the pollution control effect in stormwater runoff by applying constructed wetlands.
基金Project supported by the Hi-Tech Research and Development Program(863) of China (No. 2002AA601022).
文摘Storm runoff pollution process was investigated in an urban catchment with an area of 1.3 km^2 in Wuhan City of China. The results indicate that the pollutant concentration peaks preceded the flow peaks in all of 8 monitored storm events. The intervals between pollution peak and flow peak were shorter in the rain events with higher intensity in the initial period than those with lower intensity. The fractions of pollution load transported by the first 30% of runoff volume (FF30) were 52.2%-72.1% for total suspended solids (TSS), 53.0%-65.3% for chemical oxygen demand (COD), 40.4%-50.6% for total nitrogen (TN), and 45.8%-63.2% for total phosphorus (TP), respectively. Runoff pollution was positively related to non-raining days before the rainfall. Intercepting the first 30% of runoff volume can remove 62.4% of TSS load, 59.4% of COD load, 46.8% of TN load, and 54.1% of TP load, respectively, according to all the storm events. It is suggested that controlling the first flush is a critical measure in reduction of urban stormwater pollution.
文摘In this article,alkali lignin separated from paper pulp waste was grafted into a novel copolymer LSAA (a copolymer of lignin,starch, acrylamide,and acrylic acid).Its practical application effect and environmental safety were studied.The results of field simulation experiment indicated that the application of LSAA significantly affected the output of the runoff and pollutants.The runoff quantity was decreased by 16.67%-47.00%and the loads of total suspended solids (TSS),chemical oxygen demand (COD),total nit...
基金supported by the Key Project of Chinese Ministry of Education(No.108177)the National Natural Science Foundation of China(No.50679049)
文摘For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.
基金Supported by National Science and Technology Key Project of Water Pollution Control and Management(2008ZX07317-001)
文摘[Objective] The aim was to analyze the pollution characteristics of surface runoff in Zhenjiang City.[Method] On July 4 and August 16,2010,surface runoff samples were collected in different rainfall durations in Zhenjiang City,and the variation characteristics of suspended substance (SS),chemical oxygen demand (CODCr),ammonia nitrogen (NH3-N) and total phosphorus (TP) in surface runoff were analyzed.[Result] With the increase of rainfall duration,SS concentration in surface runoff of Zhenjiang City on July 4 and August 16,2010 went up firstly and then went down,with the maximum concentration of 1 240 and 160mg/L,respectively,and the decreasing rang of SS concentration in the late stage of rainfall on July 4 was obviously greater than that of August 16 due to stronger rainfall on July 4.The general variation of CODCr was similar to that of SS concentration,and the change range of CODCr on July 4 (32-212mg/L) was larger than that of August 16 (13-53mg/L).In addition,the variation trends of NH3-N and TP concentration were similar,namely they increased firstly and then reduced rapidly,and the decreasing range of NH3-N and TP concentration was greater than that of SS concentration in the late stage of rainfall.[Conclusion] The research results could provide references for the study on water quality variation characteristics and treatment of surface runoff.
基金Key Program of Natural Science Foundation of China(No. 40576024).
文摘Urbanization is the dominant form of land-use change in terms of impacts on water quality, hydrology, physical proper- ties of watersheds and their nonpoint source (NPS) pollution po- tential at present. Urbanization has changed the source, process and sink of urban NPS pollution, especially raised the pollution load of urban runoff NPS in receiving water. Urban runoff pollu- tion is a hot spot of research on NPS. This paper analyzed type, source and harm of the NPS pollutants of urban runoff and its influence on the receiving water. Through estimating NPS pollu- tion load of urban runoff and summarizing the law and character- istics of urban runoff NPS systemically, study on management and control of urban runoff NPS pollution was focused on the applica- tion of BMPs (best management practices). It is a fresh method- ology that management and control on NPS pollution from urban surface runoff was analyzed by methods of landscape ecology, environmental economics and environmental management. The paper provided a scientific reference for mitigating urban water environment pressure and an effective method for management and control of NPS pollution from urban surface runoff..
基金supports from the Western Development Plan of CAS (No. KZCX2-XB3-09)the Project of National Science & Technology Pillar Program (No. 2011BAD31B03)
文摘Stormwater runoff in rural townships has a high potential for water quality impairment but little information is available on strormwater runoff pollution from rural townships.To investigate the characteristics of runoff pollution in a rural township,a catchment(2.32 ha) in Linshan Township,Sichuan,China was selected to examine runoff and quality parameters including precipitation,flow rate,and total nitrogen(TN),dissolved nitrogen(DN),total phosphorus(TP),dissolved phosphorus(DP),particulate phosphorus(PP),chemical oxygen demand(COD) and suspended solid(SS) in 12 rainfall events occurring between June 2006 and July 2007.Results show that the annual pollutant loads were 47.17 kg ha-1 for TN,6.64 kg ha-1 for TP,1186 kg ha-1 for COD,and 4297 kg ha-1 for SS.DN and PP were the main forms of nitrogen and phosphorus in stormwater runoff.TP,COD and SS showed medium mass first flushes,in which nearly 40% of the total pollutant masses were transported by the first 30% of total flow volume.The peak of pollutant concentration appeared before the peak of runoff due to the first flush of accumulative pollutants in impervious areas and drainage ditches.The EMC values of TN,TP,DN and PP were negatively correlated to the maximum rainfall intensity,precipitation,total flow volume,and runoff duration(P<0.05,n=12),while EMC of COD and SS were not related to any rainfall characteristics.The FF30(FF,First Flush) for TN,TP,COD and SS were positively correlated to the maximum rainfall intensity(P<0.05,n=12),and TP was also positively correlated to the average rainfall intensity(P<0.05,n=12),indicating that the magnitude of first flush increased with the rainfall intensity in the Linshan Township.
基金Supported by Project of National Natural Science Foundation of Liaoning Province(20102200)
文摘Taking surface runoff of Coastal Highway in Liaoning Province as research object,this paper analyzed water quality characteristics of runoff and flow rules of pollutants. It proposed using constructed wetland treatment technique in the drainage system from the perspective of effectively removing major pollutants. Using the constructed wetland k- C* model and relevant experience,parameters of constructed wetland can be obtained. The basic model is as follows: constructed wetland lies in two sides of the road,and surface runoff sewage is collected and treated separately with 1 km road section as the collection unit. The wetland area in one side is 191. 6 m2,average water depth is 0. 5 m,wetland width is 8 m,and wetland length is 24 m.
文摘Taking a reservoir in South China as an example, we use rainfall-runoff unit hydrograph method to analyze the time changing process of surface runoff inflow, which generated by typical design rainfall. On the basis of time series data of flow and water quality in control section of the main rivers in Xili Reservoir, we establish mathematical response relation between non-point source pollutants flux, such as flux of COD, flux of NH3-H, in catchment area of control section and runoff. Then we simulate the time dynamic change progress of non-point source pollution load which generate with the initial stage runoff that generated by design rainfall and flow into reservoir. It can provide technical parameters for the design of non-point source which generate from early runoff treatment project.
文摘The operating capacity of the Abidjan’s groundwater became insufficient. The deficit in drinking water resources in the District of Abidjan remains the major concern of the decision maker. The Aghien lagoon stands as one of the most interesting alternatives. However, studies show the levels of pollutions of this resource without lighting out on the causes and sources of these pollutions. The present study extends over the entire catchment of the Aghien lagoon which reveals the presence of urban areas and agricultural activity areas. This raises real concerns for the Ivorian authorities. This study suggests making cartography of the risk levels of pollution on the Aghien lagoon by the surface runoff on the watershed to enlighten the decision-makers on the possible measures to be taken for the protection of this resource. It emerges from it that the risk of contamination of the lagoon is very likely. Agricultural and domestic best practices inside the pouring pond are compulsory to fight against the pollutions of this resource.
文摘An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.
基金supported by the National Natural Science Foundation of China(52370041)National Natural Science Foundation of China(21976134 and 21707104)State Key Laboratory of Pollution treatment and Resource Reuse Foundation(NO.PCRRK21001).
文摘To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environmental processing applications due to their exceptionally high surface areas,large pore sizes,and enough pore volumes.These properties might enhance the performance of materials concerning adsorption/catalysis capability,durability,and stability.In this review,we enumerate the ordered mesoporous materials as adsorbents/catalysts and their modifications in water pollution treatment from the past decade,including heavy metals(Hg^(2+),Pb^(2+),Cd^(2+),Cr^(6+),etc.),toxic anions(nitrate,phosphate,fluoride,etc.),and organic contaminants(organic dyes,antibiotics,etc.).These contributions demonstrate a deep understanding of the synergistic effect between the incorporated framework and homogeneous active centers.Besides,the challenges and perspectives of the future developments of ordered mesoporous materials in wastewater treatment are proposed.This work provides a theoretical basis and complete summary for the application of ordered mesoporous materials in the removal of contaminants from aqueous solutions.
基金financially supported by National Natural Science Foundation of China(22074100)the Young Elite Scientist Sponsorship Program by CAST(YESS20200036)+3 种基金the Researchers Supporting Project Number RSP-2021/138King Saud University,Riyadh,Saudi ArabiaTechnological Innovation R&D Project of Chengdu City(2019-YF05-31702266-SN)Sichuan University-Panzhihua City joint Project(2020CDPZH-5)。
文摘Mercury is a threatening pollutant in food,herein,we developed a Tb^(3+)-nucleic acid probe-based label-free assay for mix-and-read,rapid detection of mercury pollution.The assay utilized the feature of light-up fluorescence of terbium ions(Tb^(3+))via binding with single-strand DNA.Mercury ion,Hg^(2+)induced thymine(T)-rich DNA strand to form a double-strand structure(T-Hg^(2+)-T),thus leading to fluorescence reduction.Based on the principle,Hg^(2+)can be quantified based on the fluorescence of Tb^(3+),the limit of detection was 0.0689μmol/L and the linear range was 0.1-6.0μmol/L.Due to the specificity of T-Hg^(2+)-T artificial base pair,the assay could distinguish Hg^(2+)from other metal ions.The recovery rate was ranged in 98.71%-101.34%for detecting mercury pollution in three food samples.The assay is low-cost,separation-free and mix-to-read,thus was a competitive tool for detection of mercury pollution to ensure food safety.
基金supported by the 2015 Science and Technology Project of Yunnan Province (Grant No. 2015FD075)Yunnan Normal University Scientific Research Training Fund Project (Grant No. ky2015-141)
文摘With the control of point source pollution in Dianchi Lake basin, and the expansion of Kunming city, non-point source pollution has become the main source pollution of urban water environment and Dianchi Lake. To reveal the nitrogen pollution characteristics in watershed, this research selected key monitoring points and sections at Baoxiang river basin in rainy season which is the peak transported time of non-point source pollution, the nitrogen and hydrological indicators are monitored systematically. The different forms of nitrogen are analyzed, the pollution load of nitrogen are calculated and studied at cardinal sections; combined with the literature data, we compared the water nitrogen characteristics of Dianchi basin and Taihu basin, the main results are as follows:(1) In summer, water nitrogen form of Baoxiang river in the Caohe area is dominated by nitrate nitrogen, while in other areas it is dominated by ammonia nitrogen which is accounted for 31%-50% of total nitrogen;(2) The water pollution loads of Baoxiang river tended to increase from upstream to downstream, from June to August the total nitrogen pollution mainly comes from urban areas and the pollution load is 166.408 t;(3) In Dianchi Lake watershed and Taihu Lake watershed nitrogen concentration of inflow river is higher than that of the lake, nitrate nitrogen concentration between inflow river and lake shows a little difference, while ammonia nitrogen concentration of inflow river is higher than that of the lake. The results can provide the theoretical basis for nonpoint source pollution control and urban water environment planning and improvement in Dianchi Lake Basin.
基金funded by the National Natural Science Foundation of China[grant number 42075094]the China Postdoctoral Science Foundation[grant number 2021M691921]+1 种基金the Ministry of Ecology and Environment of the People’s Republic of China[grant number DQGG202121]the Dongying Ecological and Environmental Bureau[grant number 2021DFKY-0779]。
文摘The petroleum industry is a significant source of anthropogenic volatile organic compounds(VOCs),but up to now,its exact impact on urban VOCs and ozone(O_(3))remains unclear.This study conducted year-long VOC ob-servations in Dongying,China,a petroleum industrial region.The VOCs from the petroleum industry(oil and gas volatilization and petrochemical production)were identified by employing the positive matrix factorization model,and their contribution to O_(3) formation was quantitatively evaluated using an observation-based chemical box model.The observed annual average concentration of VOCs was 68.6±63.5 ppbv,with a maximum daily av-erage of 335.3 ppbv.The petroleum industry accounted for 66.5%of total VOCs,contributing 54.9%from oil and gas evaporation and 11.6%from petrochemical production.Model results indicated that VOCs from the petroleum industry contributed to 31%of net O_(3) production,with 21.3%and 34.2%contributions to HO_(2)+NO and RO_(2)+NO pathways,respectively.The larger impact on the RO_(2) pathway is primarily due to the fact that OH+VOCs ac-count for 86.9%of the primary source of RO_(2).This study highlights the critical role of controlling VOCs from the petroleum industry in urban O_(3) pollution,especially those from previously overlooked low-reactivity alkanes.