All characteristics of vegetation,runoff and sediment from 1960 to 2010 in the Xiliu Gully Watershed,which is a representative watershed in wind-water erosion crisscross region in the upper reaches of the Yellow River...All characteristics of vegetation,runoff and sediment from 1960 to 2010 in the Xiliu Gully Watershed,which is a representative watershed in wind-water erosion crisscross region in the upper reaches of the Yellow River of China,have been analyzed in this study.Based on the remote sensing image data,and used multi-spectral interpretation method,the characteristics of vegetation variation in the Xiliu Gully Watershed have been analyzed.And the rules of precipitation,runoff and sediment's changes have been illuminated by using mathematical statistics method.What′s more,the influence mechanism of vegetation on runoff and sediment has been discussed by using the data obtained from artificial rainfall simulation test.The results showed that the main vegetation type was given priority to low coverage,and the area of the low vegetation coverage type was reducing year by year.On the country,the area of the high vegetation coverage type was gradually increasing.In a word,vegetation conditions had got better improved since 2000 when the watershed management project started.The average annual precipitation of the river basin also got slightly increase in 2000–2010.The average annual runoff reduced by 37.5%,and the average annual sediment reduced by 73.9% in the same period.The results of artificial rainfall simulation tests showed that the improvement of vegetation coverage could increase not only soil infiltration but also vegetation evapotranspiration,and then made the rainfall-induced runoff production decrease.Vegetation root system could increases the resistance ability of soil to erosion,and vegetation aboveground part could reduce raindrop kinetic energy and splash soil erosion.Therefore,with the increase of vegetation coverage,the rainfall-induced sediment could decrease.展开更多
In this study, Land Surface Temperature(LST) and its lapse rate over the mountainous Kashmir Himalaya was estimated using MODIS data and correlated with the observed in-situ air temperature(Tair) data. Comparison betw...In this study, Land Surface Temperature(LST) and its lapse rate over the mountainous Kashmir Himalaya was estimated using MODIS data and correlated with the observed in-situ air temperature(Tair) data. Comparison between the MODIS LST and Tair showed a close agreement with the maximum error of the estimate ±1°C and the correlation coefficient >0.90. Analysis of the LST data from 2002-2012 showed an increasing trend at all the selected locations except at a site located in the southeastern part of Kashmir valley. Using the GTOPO30 DEM, MODIS LST data was used to estimate the actual temperature lapse rate(ATLR) along various transects across Kashmir Himalaya, which showed significant variations in space and time ranging from 0.3°C to 1.2°C per 100 m altitude change. This observation is at variance with the standard temperature lapse rate(STLR) of 0.65°C used universally in most of the hydrological and other land surface models. Snowmelt Runoff Model(SRM) was used to determine the efficacy of using the ATLR for simulating the stream flows in one of the glaciated and snow-covered watersheds in Kashmir. The use of ATLR in the SRM model improved the R2 between the observed and predicted streamflows from 0.92 to 0.97.It is hoped that the operational use of satellite-derived LST and ATLR shall improve the understanding and quantification of various processes related to climate, hydrology and ecosystem in the mountainous and data-scarce Himalaya where the use of temperature and ATLR are critical parameters for understanding various land surface and climate processes.展开更多
Rainfall simulations have been conducted to study the soil erosion process of purple soil in two cultiva-tion practices—contour cultivation and downslope cultivation. Results showed that under the two cultivation pra...Rainfall simulations have been conducted to study the soil erosion process of purple soil in two cultiva-tion practices—contour cultivation and downslope cultivation. Results showed that under the two cultivation prac-tices,the surface runoff can be described by the logarithmic function formula. In the initial period of rainfall,the amount of runoff increased with the rainfall duration and 20 minutes later it became relatively constant. The chang-ing process of soil erosion rate may be described by the logarithmic function formula. The erosion rate increased with the rainfall duration and 20 minutes later it also became constant. Under downslope cultivation condition,the soil erosion rate increased more significantly than that under contour cultivation condition in the case of gentle rain-fall intensity,and there is no obvious difference in erosion rate for downslope cultivation and contour cultivation practices. However,with increasing rainfall intensity the soil erosion rate under the downslope cultivation condition could be more than 30 times that under the contour cultivation condition. But this kind of difference would be re-duced to some extent in the case of heavy rain.展开更多
The catchment of runoff which improves the moisture content condition in tree holes isof great improtance to the development of the afforestation in arid and semi-arid regions.The crux of this technique is the soil wa...The catchment of runoff which improves the moisture content condition in tree holes isof great improtance to the development of the afforestation in arid and semi-arid regions.The crux of this technique is the soil water content which influnences the survial rates,展开更多
基金Under the auspices of National Basic Research Program of China(No.2011CB403303)Innovation Scientists and Technicians Troop Construction Projects of Henan Province(No.162101510004)Foundation of Yellow River Institute of Hydraulic Research of China(No.HKY-2011-15)
文摘All characteristics of vegetation,runoff and sediment from 1960 to 2010 in the Xiliu Gully Watershed,which is a representative watershed in wind-water erosion crisscross region in the upper reaches of the Yellow River of China,have been analyzed in this study.Based on the remote sensing image data,and used multi-spectral interpretation method,the characteristics of vegetation variation in the Xiliu Gully Watershed have been analyzed.And the rules of precipitation,runoff and sediment's changes have been illuminated by using mathematical statistics method.What′s more,the influence mechanism of vegetation on runoff and sediment has been discussed by using the data obtained from artificial rainfall simulation test.The results showed that the main vegetation type was given priority to low coverage,and the area of the low vegetation coverage type was reducing year by year.On the country,the area of the high vegetation coverage type was gradually increasing.In a word,vegetation conditions had got better improved since 2000 when the watershed management project started.The average annual precipitation of the river basin also got slightly increase in 2000–2010.The average annual runoff reduced by 37.5%,and the average annual sediment reduced by 73.9% in the same period.The results of artificial rainfall simulation tests showed that the improvement of vegetation coverage could increase not only soil infiltration but also vegetation evapotranspiration,and then made the rainfall-induced runoff production decrease.Vegetation root system could increases the resistance ability of soil to erosion,and vegetation aboveground part could reduce raindrop kinetic energy and splash soil erosion.Therefore,with the increase of vegetation coverage,the rainfall-induced sediment could decrease.
基金Department of Science and Technology (DST), Government of India sponsored consortium project titled "Himalayan Cryosphere: Science and Society" and the financial assistance received from the Department under the project
文摘In this study, Land Surface Temperature(LST) and its lapse rate over the mountainous Kashmir Himalaya was estimated using MODIS data and correlated with the observed in-situ air temperature(Tair) data. Comparison between the MODIS LST and Tair showed a close agreement with the maximum error of the estimate ±1°C and the correlation coefficient >0.90. Analysis of the LST data from 2002-2012 showed an increasing trend at all the selected locations except at a site located in the southeastern part of Kashmir valley. Using the GTOPO30 DEM, MODIS LST data was used to estimate the actual temperature lapse rate(ATLR) along various transects across Kashmir Himalaya, which showed significant variations in space and time ranging from 0.3°C to 1.2°C per 100 m altitude change. This observation is at variance with the standard temperature lapse rate(STLR) of 0.65°C used universally in most of the hydrological and other land surface models. Snowmelt Runoff Model(SRM) was used to determine the efficacy of using the ATLR for simulating the stream flows in one of the glaciated and snow-covered watersheds in Kashmir. The use of ATLR in the SRM model improved the R2 between the observed and predicted streamflows from 0.92 to 0.97.It is hoped that the operational use of satellite-derived LST and ATLR shall improve the understanding and quantification of various processes related to climate, hydrology and ecosystem in the mountainous and data-scarce Himalaya where the use of temperature and ATLR are critical parameters for understanding various land surface and climate processes.
基金This research project was granted jointly by the National Program on Key Basic Research Projects "973" (2007CB407206)
文摘Rainfall simulations have been conducted to study the soil erosion process of purple soil in two cultiva-tion practices—contour cultivation and downslope cultivation. Results showed that under the two cultivation prac-tices,the surface runoff can be described by the logarithmic function formula. In the initial period of rainfall,the amount of runoff increased with the rainfall duration and 20 minutes later it became relatively constant. The chang-ing process of soil erosion rate may be described by the logarithmic function formula. The erosion rate increased with the rainfall duration and 20 minutes later it also became constant. Under downslope cultivation condition,the soil erosion rate increased more significantly than that under contour cultivation condition in the case of gentle rain-fall intensity,and there is no obvious difference in erosion rate for downslope cultivation and contour cultivation practices. However,with increasing rainfall intensity the soil erosion rate under the downslope cultivation condition could be more than 30 times that under the contour cultivation condition. But this kind of difference would be re-duced to some extent in the case of heavy rain.
文摘The catchment of runoff which improves the moisture content condition in tree holes isof great improtance to the development of the afforestation in arid and semi-arid regions.The crux of this technique is the soil water content which influnences the survial rates,