期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mechanics of formation and rupture of human aneurysm 被引量:1
1
作者 任九生 袁学刚 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第5期593-604,共12页
The mechanical response of the human arterial wall under the combined loading of inflation, axial extension, and torsion is examined within the framework of the large deformation hyper-elastic theory. The probability ... The mechanical response of the human arterial wall under the combined loading of inflation, axial extension, and torsion is examined within the framework of the large deformation hyper-elastic theory. The probability of the aneurysm formation is explained with the instability theory of structure, and the probability of its rupture is explained with the strength theory of material. Taking account of the residual stress and the smooth muscle activities, a two layer thick-walled circular cylindrical tube model with fiber-reinforced composite-based incompressible anisotropic hyper-elastic materials is employed to model the mechanical behavior of the arterial wall. The deformation curves and the stress distributions of the arterial wall are given under normal and abnormal conditions. The results of the deformation and the structure instability analysis show that the model can describe the uniform inflation deformation of the arterial wall under normal conditions, as well as formation and growth of an aneurysm under abnormal conditions such as the decreased stiffness of the elastic and collagen fibers. From the analysis of the stresses and the material strength, the rupture of an aneurysm may also be described by this model if the wall stress is larger than its strength. 展开更多
关键词 arterial wall with collagen fibers formation and rupture of aneurysm residual stress instability theory of structure strength theory of material
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部