Wheat is the second most important cereal in Kenya. However, production is severely constrained by both abiotic and biotic stresses. Of the biotic stresses a devastating pest (Russian wheat aphid (RWA)) and a serious ...Wheat is the second most important cereal in Kenya. However, production is severely constrained by both abiotic and biotic stresses. Of the biotic stresses a devastating pest (Russian wheat aphid (RWA)) and a serious disease (stem rust race TTKS (“Ug99”)) are currently the biggest problem for wheat producers in Kenya. Severe infestations by RWA may result in yield losses of up to 90% while “Ug99” infected fields may suffer 100% crop loss. The two pests combined are seriously affecting wheat farmers’ incomes because of the heavy reliance on pesticides that increase the cost of production. This study attempted to develop and characterize wheat lines that are resistant to both RWA and “Ug99” by pyramiding two major resistance genes. Three wheat varieties: “Kwale”, a Kenyan high yielding variety but susceptible to both RWA and “Ug99”;“Cook”, an Australian variety carrying stem rust resistance gene Sr36 conferring immunity to “Ug99”;and “KRWA9”, a Kenyan line with resistance to RWA but of poor agronomic attributes were used. A double cross F1 (DC F1) was obtained by crossing the F1 of “Kwale × Cook” and the F1 of “Kwale × KRWA9”. The DC F1 population was subjected to sequential screening for both RWA and “Ug99” resistance. Surviving DC F1 progenies were left to self pollinate to obtain the F2 of the double cross (DC F2). The DC F2 progenies were sequentially screened against RWA and “Ug99” to yield a population that was resistant to both RWA and “Ug99”. Genotyping of the DC F2:3 families were conducted to select homozygous resistant plants. Data indicated that the RWA and “Ug99” resistance genes were successfully pyramided. Though races with virulence for Sr36 have been reported, the gene provides immunity to race “Ug99” and can still be effectively used as a component for “Ug99” resistance breeding together with other Sr genes.展开更多
An increased wheat yield potential under changing environmental conditions is a challenge in agriculture. Resistant wheat lines can yield more than susceptible wheat lines in the presence of Russian wheat aphid infest...An increased wheat yield potential under changing environmental conditions is a challenge in agriculture. Resistant wheat lines can yield more than susceptible wheat lines in the presence of Russian wheat aphid infestation. There are currently four Russian wheat aphid (RWA) biotypes known in South Africa with different virulence against different wheat cultivars. To keep up with the ever-changing patterns it is necessary to screen the cultivars for resistance against these Russian wheat aphid (RWA) biotypes. All the dryland wheat cultivars on the market were evaluated for resistance against the four known Russian wheat aphid (RWA) biotypes in South Africa. Through this evaluation, the status of Russian wheat aphid (RWA) resistance in South African dryland wheat cultivars can be updated to adapt to environmental changes and the wheat industry can adapt to changes in virulence of Russian wheat aphid (RWA) biotypes that may cause damage to Russian wheat aphid (RWA) resistant cultivars, subsequently affecting yield. Evaluations were done in the glasshouse by screening wheat cultivars against four different South African Russian wheat aphid (RWA) biotypes, RWASA1-RWASA4, under controlled conditions. The glasshouse evaluations showed that out of the 19 dryland wheat cultivars currently on the market in South Africa 16 are resistant against RWASA1, 7 are resistant against RWASA2, 7 are resistant against RWASA3 and 5 are resistant against RWASA4. Dryland wheat cultivars were also evaluated under field conditions at four different field localities. In the field, 5 cultivars were resistant to RWASA3 at two localities, respectively, and 3 and 5 cultivars were resistant to RWASA4 at two localities, respectively. Since Russian wheat aphid (RWA) damage can influence the final yield of a wheat cultivar significantly, changing conditions can influence both resistant cultivars, and the virulence of Russian wheat aphid (RWA). It is advisable to evaluate wheat cultivars on the market under different conditions and with all known Russian wheat aphid (RWA) biotypes in an area.展开更多
Russian wheat aphid (Diuraphis noxia) is an international wheat pest and was first recorded in South Africa in 1978 in the Bethlehem area in the Eastern Free State. Le-sotho lies adjacent to one of the largest wheat p...Russian wheat aphid (Diuraphis noxia) is an international wheat pest and was first recorded in South Africa in 1978 in the Bethlehem area in the Eastern Free State. Le-sotho lies adjacent to one of the largest wheat producing areas in South Africa, the Eastern Free State, where winter wheat and facultative types are cultivated under dry land conditions. Wheat (Triticum aestivum L.) is an important crop adapted to all agro-ecological zones of Lesotho. Russian wheat aphid may have a significant impact on wheat yield. No monitoring or pest control is being done in Lesotho and at this stage there is very little information on the Russian wheat aphid resistance of wheat culti-vars cultivated in Lesotho. In view of this it is important to monitor the distribution of Russian wheat aphid biotypes in Lesotho and determine the level of Russian wheat aphid resistance in local Lesotho wheat cultivars. Two local Lesotho wheat cultivars, Bolane and Makalaote were screened together with South African cultivars Elands, Matlabas, Senqu, PAN3379, PAN3118 and SST387, in the glasshouse against all four known biotypes that occur in South Africa. All these cultivars were also planted in 5 m plots in the field at two localities Leribe and Roma in the lowlands of Lesotho. These cultivars were screened in the field for Russian wheat aphid resistance. The predomi-nant Russian wheat aphid biotypes in these areas were also determined. The Lesotho cultivar, Bolane had resistance against RWASA2 in the glasshouse, while Makalaote did not have any Russian wheat aphid resistance in either the glasshouse or field screenings. To contribute to food security an increasing wheat yield potential is a high priority. Russian wheat aphid has been included in the list of important international cereal pests. Russian wheat aphid adapts to changing environments and taking their ecology, distribution, virulence patterns, and variability into account is important in minimizing the gap between actual and attainable yields. Current management prac-tices for winter wheat in South Africa include the use of resistant cultivars, which is the most economical management strategy for Russian wheat aphid. Introducing Russian wheat aphid resistant cultivars in Lesotho will improve overall yield and as a result food security. This will also result in lower Russian wheat aphid pest pressure in the adjacent wheat production areas in the Eastern Free State, South Africa.展开更多
<div style="text-align:justify;"> <i><span style="font-family:Verdana;">Sipha</span></i><span style="font-family:Verdana;"> <i>maydis</i>&l...<div style="text-align:justify;"> <i><span style="font-family:Verdana;">Sipha</span></i><span style="font-family:Verdana;"> <i>maydis</i></span><span style="font-family:""><span style="font-family:Verdana;"> Passerini (Hemiptera: Aphididae) is a pest of cereals in many regions of the world and was identified as an invasive pest of the US in 2007. Regional surveys from 2015-2017 revealed this pest was broadly distributed throughout many of the western Great Plains states where it is a potential threat to cereal production. The common name hedgehog grain aphid, HGA, has been associated with </span><i><span style="font-family:Verdana;">Sipha</span></i> <i><span style="font-family:Verdana;">maydis</span></i><span style="font-family:Verdana;"> in the US. Cross-resistance where a plant is resistant to one aphid species and is also resistant to another species</span></span><span style="font-family:Verdana;"> that</span><span style="font-family:""><span style="font-family:Verdana;"> is known to occur. Six barleys were evaluated for cross-resistance to HGA: Russian wheat aphid, RWA, resistant germplasms STARS 9301B and STARS 9577B and cultivar “Mesa”;greenbug, GB, resistant germplasm STARS 1501B and cultivar “Post 90”;and RWA and GB resistant experimental line 00BX 11-115. Cultivars “Morex” and “Schuyler” were susceptible controls. Antixenosis was measured 5 days after infestation by HGA. Seedling damage ratings and reductions in seedling growth were recorded after 17 days of infestation. Intrinsic rate of increase, </span><i><span style="font-family:Verdana;">r</span><sub><span style="font-family:Verdana;">m</span></sub></i><span style="font-family:Verdana;">, of HGA was determined by following the development of newborn aphids to adulthood and reproduction. 00BX 11-115 and Post 90 had significantly greater antixenosis (fewer aphids/seedling), significantly lower plant damage ratings, and significantly lower intrinsic rates of increase than other entries. Differences in seedling growth were not significant. 00BX 11-115 and Post 90 were the only entries with the </span><i><span style="font-family:Verdana;">Rsg</span></i><span style="font-family:Verdana;">1 greenbug resistance gene. </span><i><span style="font-family:Verdana;">Rsg</span></i><span style="font-family:Verdana;">1 greenbug resistance confers cross-resistance to HGA in the seedling stage.</span></span><span style="font-family:Verdana;"></span> </div>展开更多
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), is a major pest of small grains. As with plant-feeding aphids in general, the interaction between RWA and host plants is govern...The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), is a major pest of small grains. As with plant-feeding aphids in general, the interaction between RWA and host plants is governed, on the insect side, by proteins and enzymes in saliva. In this work, we examined sequence variations in transcripts encoding proteins and enzymes of RWA salivary glands. We conducted reverse transcription - polymerase chain reaction in RWA biotypes 1 and 2 using primers derived from pea aphid orthologs, and cloned regions of 17 putative salivary gland transcripts. For four of the transcripts, we observed no difference in sequences between the two biotypes. For the other 13 transcripts, for example, the transcripts encoding sucrase, trehalase and protein C002, large amount of variations, both within each biotype and between the two biotypes, were observed. Usually the two biotypes shared only one variant, which was typically the most common variant in both biotypes. Most of the transcripts had more non-synonymous than synonymous codon changes among their variants. Our results offer possible molecular markers for distinguishing the two biotypes and insights into their evolution.展开更多
Susceptible and resistance wheat cultivars, Triticum aestivum L, were presented to two biotypes of Russian wheat aphid, Diuraphis noxia (Mordvilko), in multiple choice tests to assay their relative acceptability as ...Susceptible and resistance wheat cultivars, Triticum aestivum L, were presented to two biotypes of Russian wheat aphid, Diuraphis noxia (Mordvilko), in multiple choice tests to assay their relative acceptability as host plants. Both apterae (third and fourth instars) and alate adults were offered plants at the two-leaf stage in different cultivar combinations at 22±1℃ and 16:8 (L: D) hour photoperiod. Apterae were released from Petri dishes in the center of a circle of test plants, whereas alatae dispersed from a mature aphid colony to settle on plants arranged in rows. Both alatae and apterous nymphs of both biotypes readily colonized all cultivars tested:‘2137', ‘Akron',‘Ankor’,‘ Halt’ ,‘ Jagger’ ,‘ Prairie Red’ , ‘Stanton',‘TAM 107',‘TAM 110',‘Trego', ‘ Yuma', and ‘Yumar'. Fewer biotype I apterae responded (settled and fed) in the combination containing more resistant (Dn4- and Dny-expressing) cultivars, compared to the combinations that had fewer. The reverse was true for biotype 2 apterae; more aphids responded in the combination containing the largest number of Dn4 expressing cultivars. Differential colonization of cultivars was observed in only one combination, in which biotype 2 apterae colonized Akron and Yumar in larger numbers than they did Stanton and Yuma. A separate experiment confirmed that, 48 hours after infestation, more biotype 2 apterae abandoned plants of Yuma than plants of Yumar. This differential response was likely due to genetic differences between the two ' near isogenic' lines that include the lack of Dn4 expression in Yuma. Choice tests with alatae did not result in differential rates of cultivar colonization by either biotype in any combination tested. These results suggest that young wheat plants appear to lack any meaningful antixenosis toward D. noxia, even though the aphids appear to perceive, and sometimes respond to, certain differences in cultivar suitability.展开更多
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko),exists with holocyclic life cycle in Tacheng, Xinjiang in Northwest China. It produces males and oviparae to mate and oviposit for overwintering by eggs. Unde...The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko),exists with holocyclic life cycle in Tacheng, Xinjiang in Northwest China. It produces males and oviparae to mate and oviposit for overwintering by eggs. Under laboratory conditions with 14 h/d photophase and temperature not lower than 15℃, RWA occurred in parthenogenesis and produced no males. The laboratory popu-lations of Russian wheat aphid, which were kept under natural conditions in fall by 15th, 49th and 81st generation while wild populations produced males and oviparae for mating, produced males and oviparae with their number decreased gradually, but viviparae and nymphs increased sequen-tially. As a result, it produced a small amount of oviparae and no males emerged in fields by 49 generations' reproduction in laboratory. After development of 81 generations, oviparae happened occasionally and no eggs occurred for overwintering instead of viviparae and nymphs. A hypothesis of RWA disastrous process was proposed. The life cycle of RWA can be changed from holocycly to anholocycly in its long-term spread and evolution. Anholocycly is more dangerous than holocycly to small grains for its strong adaptability and dispersal ability.展开更多
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), has become a worldwide cereal pest with its dispersion to over 30 countries in this century. According to the natural history of its occurrence around the wo...The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), has become a worldwide cereal pest with its dispersion to over 30 countries in this century. According to the natural history of its occurrence around the world, it is postulated RWA originated from western or central Asia. The aphid dispersed gradually to Europe and northern Africa, but its big jump across the ocean to North America is still a mystery. There are two overwintering strategies in RWA. The anholocyclic biotype, often reproducing earlier and more offsprings than the holocyclic one, has greater impact on crops in South Africa and United States. According to the experiments on its thermal response, RWA could withstand temperatures below -20℃, while temperatures above 30℃ would be harmful to its survival. The preference to colder condition may determine its distribution on the world. RWA has made great damages to cereal crops worldwide. It caused loss in crop yield by directly feeding on plant nutrition and disturbing the plant metabolism. But its status as plant virus transporter is open to question. By now, the aphid is still a serious pest in many countries and its invasion to more countries and areas maybe continues. Therefore, the research on its biological characteristics as well as its dispersion apparently needs to be enhanced in the future.展开更多
文摘Wheat is the second most important cereal in Kenya. However, production is severely constrained by both abiotic and biotic stresses. Of the biotic stresses a devastating pest (Russian wheat aphid (RWA)) and a serious disease (stem rust race TTKS (“Ug99”)) are currently the biggest problem for wheat producers in Kenya. Severe infestations by RWA may result in yield losses of up to 90% while “Ug99” infected fields may suffer 100% crop loss. The two pests combined are seriously affecting wheat farmers’ incomes because of the heavy reliance on pesticides that increase the cost of production. This study attempted to develop and characterize wheat lines that are resistant to both RWA and “Ug99” by pyramiding two major resistance genes. Three wheat varieties: “Kwale”, a Kenyan high yielding variety but susceptible to both RWA and “Ug99”;“Cook”, an Australian variety carrying stem rust resistance gene Sr36 conferring immunity to “Ug99”;and “KRWA9”, a Kenyan line with resistance to RWA but of poor agronomic attributes were used. A double cross F1 (DC F1) was obtained by crossing the F1 of “Kwale × Cook” and the F1 of “Kwale × KRWA9”. The DC F1 population was subjected to sequential screening for both RWA and “Ug99” resistance. Surviving DC F1 progenies were left to self pollinate to obtain the F2 of the double cross (DC F2). The DC F2 progenies were sequentially screened against RWA and “Ug99” to yield a population that was resistant to both RWA and “Ug99”. Genotyping of the DC F2:3 families were conducted to select homozygous resistant plants. Data indicated that the RWA and “Ug99” resistance genes were successfully pyramided. Though races with virulence for Sr36 have been reported, the gene provides immunity to race “Ug99” and can still be effectively used as a component for “Ug99” resistance breeding together with other Sr genes.
文摘An increased wheat yield potential under changing environmental conditions is a challenge in agriculture. Resistant wheat lines can yield more than susceptible wheat lines in the presence of Russian wheat aphid infestation. There are currently four Russian wheat aphid (RWA) biotypes known in South Africa with different virulence against different wheat cultivars. To keep up with the ever-changing patterns it is necessary to screen the cultivars for resistance against these Russian wheat aphid (RWA) biotypes. All the dryland wheat cultivars on the market were evaluated for resistance against the four known Russian wheat aphid (RWA) biotypes in South Africa. Through this evaluation, the status of Russian wheat aphid (RWA) resistance in South African dryland wheat cultivars can be updated to adapt to environmental changes and the wheat industry can adapt to changes in virulence of Russian wheat aphid (RWA) biotypes that may cause damage to Russian wheat aphid (RWA) resistant cultivars, subsequently affecting yield. Evaluations were done in the glasshouse by screening wheat cultivars against four different South African Russian wheat aphid (RWA) biotypes, RWASA1-RWASA4, under controlled conditions. The glasshouse evaluations showed that out of the 19 dryland wheat cultivars currently on the market in South Africa 16 are resistant against RWASA1, 7 are resistant against RWASA2, 7 are resistant against RWASA3 and 5 are resistant against RWASA4. Dryland wheat cultivars were also evaluated under field conditions at four different field localities. In the field, 5 cultivars were resistant to RWASA3 at two localities, respectively, and 3 and 5 cultivars were resistant to RWASA4 at two localities, respectively. Since Russian wheat aphid (RWA) damage can influence the final yield of a wheat cultivar significantly, changing conditions can influence both resistant cultivars, and the virulence of Russian wheat aphid (RWA). It is advisable to evaluate wheat cultivars on the market under different conditions and with all known Russian wheat aphid (RWA) biotypes in an area.
文摘Russian wheat aphid (Diuraphis noxia) is an international wheat pest and was first recorded in South Africa in 1978 in the Bethlehem area in the Eastern Free State. Le-sotho lies adjacent to one of the largest wheat producing areas in South Africa, the Eastern Free State, where winter wheat and facultative types are cultivated under dry land conditions. Wheat (Triticum aestivum L.) is an important crop adapted to all agro-ecological zones of Lesotho. Russian wheat aphid may have a significant impact on wheat yield. No monitoring or pest control is being done in Lesotho and at this stage there is very little information on the Russian wheat aphid resistance of wheat culti-vars cultivated in Lesotho. In view of this it is important to monitor the distribution of Russian wheat aphid biotypes in Lesotho and determine the level of Russian wheat aphid resistance in local Lesotho wheat cultivars. Two local Lesotho wheat cultivars, Bolane and Makalaote were screened together with South African cultivars Elands, Matlabas, Senqu, PAN3379, PAN3118 and SST387, in the glasshouse against all four known biotypes that occur in South Africa. All these cultivars were also planted in 5 m plots in the field at two localities Leribe and Roma in the lowlands of Lesotho. These cultivars were screened in the field for Russian wheat aphid resistance. The predomi-nant Russian wheat aphid biotypes in these areas were also determined. The Lesotho cultivar, Bolane had resistance against RWASA2 in the glasshouse, while Makalaote did not have any Russian wheat aphid resistance in either the glasshouse or field screenings. To contribute to food security an increasing wheat yield potential is a high priority. Russian wheat aphid has been included in the list of important international cereal pests. Russian wheat aphid adapts to changing environments and taking their ecology, distribution, virulence patterns, and variability into account is important in minimizing the gap between actual and attainable yields. Current management prac-tices for winter wheat in South Africa include the use of resistant cultivars, which is the most economical management strategy for Russian wheat aphid. Introducing Russian wheat aphid resistant cultivars in Lesotho will improve overall yield and as a result food security. This will also result in lower Russian wheat aphid pest pressure in the adjacent wheat production areas in the Eastern Free State, South Africa.
文摘<div style="text-align:justify;"> <i><span style="font-family:Verdana;">Sipha</span></i><span style="font-family:Verdana;"> <i>maydis</i></span><span style="font-family:""><span style="font-family:Verdana;"> Passerini (Hemiptera: Aphididae) is a pest of cereals in many regions of the world and was identified as an invasive pest of the US in 2007. Regional surveys from 2015-2017 revealed this pest was broadly distributed throughout many of the western Great Plains states where it is a potential threat to cereal production. The common name hedgehog grain aphid, HGA, has been associated with </span><i><span style="font-family:Verdana;">Sipha</span></i> <i><span style="font-family:Verdana;">maydis</span></i><span style="font-family:Verdana;"> in the US. Cross-resistance where a plant is resistant to one aphid species and is also resistant to another species</span></span><span style="font-family:Verdana;"> that</span><span style="font-family:""><span style="font-family:Verdana;"> is known to occur. Six barleys were evaluated for cross-resistance to HGA: Russian wheat aphid, RWA, resistant germplasms STARS 9301B and STARS 9577B and cultivar “Mesa”;greenbug, GB, resistant germplasm STARS 1501B and cultivar “Post 90”;and RWA and GB resistant experimental line 00BX 11-115. Cultivars “Morex” and “Schuyler” were susceptible controls. Antixenosis was measured 5 days after infestation by HGA. Seedling damage ratings and reductions in seedling growth were recorded after 17 days of infestation. Intrinsic rate of increase, </span><i><span style="font-family:Verdana;">r</span><sub><span style="font-family:Verdana;">m</span></sub></i><span style="font-family:Verdana;">, of HGA was determined by following the development of newborn aphids to adulthood and reproduction. 00BX 11-115 and Post 90 had significantly greater antixenosis (fewer aphids/seedling), significantly lower plant damage ratings, and significantly lower intrinsic rates of increase than other entries. Differences in seedling growth were not significant. 00BX 11-115 and Post 90 were the only entries with the </span><i><span style="font-family:Verdana;">Rsg</span></i><span style="font-family:Verdana;">1 greenbug resistance gene. </span><i><span style="font-family:Verdana;">Rsg</span></i><span style="font-family:Verdana;">1 greenbug resistance confers cross-resistance to HGA in the seedling stage.</span></span><span style="font-family:Verdana;"></span> </div>
文摘The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), is a major pest of small grains. As with plant-feeding aphids in general, the interaction between RWA and host plants is governed, on the insect side, by proteins and enzymes in saliva. In this work, we examined sequence variations in transcripts encoding proteins and enzymes of RWA salivary glands. We conducted reverse transcription - polymerase chain reaction in RWA biotypes 1 and 2 using primers derived from pea aphid orthologs, and cloned regions of 17 putative salivary gland transcripts. For four of the transcripts, we observed no difference in sequences between the two biotypes. For the other 13 transcripts, for example, the transcripts encoding sucrase, trehalase and protein C002, large amount of variations, both within each biotype and between the two biotypes, were observed. Usually the two biotypes shared only one variant, which was typically the most common variant in both biotypes. Most of the transcripts had more non-synonymous than synonymous codon changes among their variants. Our results offer possible molecular markers for distinguishing the two biotypes and insights into their evolution.
文摘Susceptible and resistance wheat cultivars, Triticum aestivum L, were presented to two biotypes of Russian wheat aphid, Diuraphis noxia (Mordvilko), in multiple choice tests to assay their relative acceptability as host plants. Both apterae (third and fourth instars) and alate adults were offered plants at the two-leaf stage in different cultivar combinations at 22±1℃ and 16:8 (L: D) hour photoperiod. Apterae were released from Petri dishes in the center of a circle of test plants, whereas alatae dispersed from a mature aphid colony to settle on plants arranged in rows. Both alatae and apterous nymphs of both biotypes readily colonized all cultivars tested:‘2137', ‘Akron',‘Ankor’,‘ Halt’ ,‘ Jagger’ ,‘ Prairie Red’ , ‘Stanton',‘TAM 107',‘TAM 110',‘Trego', ‘ Yuma', and ‘Yumar'. Fewer biotype I apterae responded (settled and fed) in the combination containing more resistant (Dn4- and Dny-expressing) cultivars, compared to the combinations that had fewer. The reverse was true for biotype 2 apterae; more aphids responded in the combination containing the largest number of Dn4 expressing cultivars. Differential colonization of cultivars was observed in only one combination, in which biotype 2 apterae colonized Akron and Yumar in larger numbers than they did Stanton and Yuma. A separate experiment confirmed that, 48 hours after infestation, more biotype 2 apterae abandoned plants of Yuma than plants of Yumar. This differential response was likely due to genetic differences between the two ' near isogenic' lines that include the lack of Dn4 expression in Yuma. Choice tests with alatae did not result in differential rates of cultivar colonization by either biotype in any combination tested. These results suggest that young wheat plants appear to lack any meaningful antixenosis toward D. noxia, even though the aphids appear to perceive, and sometimes respond to, certain differences in cultivar suitability.
基金the National Natural Science Foundation of China (Grant No. 39670109) and CAS Special Support Program.
文摘The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko),exists with holocyclic life cycle in Tacheng, Xinjiang in Northwest China. It produces males and oviparae to mate and oviposit for overwintering by eggs. Under laboratory conditions with 14 h/d photophase and temperature not lower than 15℃, RWA occurred in parthenogenesis and produced no males. The laboratory popu-lations of Russian wheat aphid, which were kept under natural conditions in fall by 15th, 49th and 81st generation while wild populations produced males and oviparae for mating, produced males and oviparae with their number decreased gradually, but viviparae and nymphs increased sequen-tially. As a result, it produced a small amount of oviparae and no males emerged in fields by 49 generations' reproduction in laboratory. After development of 81 generations, oviparae happened occasionally and no eggs occurred for overwintering instead of viviparae and nymphs. A hypothesis of RWA disastrous process was proposed. The life cycle of RWA can be changed from holocycly to anholocycly in its long-term spread and evolution. Anholocycly is more dangerous than holocycly to small grains for its strong adaptability and dispersal ability.
文摘The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), has become a worldwide cereal pest with its dispersion to over 30 countries in this century. According to the natural history of its occurrence around the world, it is postulated RWA originated from western or central Asia. The aphid dispersed gradually to Europe and northern Africa, but its big jump across the ocean to North America is still a mystery. There are two overwintering strategies in RWA. The anholocyclic biotype, often reproducing earlier and more offsprings than the holocyclic one, has greater impact on crops in South Africa and United States. According to the experiments on its thermal response, RWA could withstand temperatures below -20℃, while temperatures above 30℃ would be harmful to its survival. The preference to colder condition may determine its distribution on the world. RWA has made great damages to cereal crops worldwide. It caused loss in crop yield by directly feeding on plant nutrition and disturbing the plant metabolism. But its status as plant virus transporter is open to question. By now, the aphid is still a serious pest in many countries and its invasion to more countries and areas maybe continues. Therefore, the research on its biological characteristics as well as its dispersion apparently needs to be enhanced in the future.