期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
XPS Analysis of the Cerium Conversion Coating on the Anodized A16061/SiC_p 被引量:1
1
作者 XingwenYU ChuanweiYAN +1 位作者 ChunanCAO GuoqiangLI 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第2期157-160,共4页
A method of concentration analysis based on X-ray photoelectron spectroscopy (XPS) results was introduced. The concentration of Ce-rich conversion coating on the anodized Al based metal matrix composites AI6061/SiCp w... A method of concentration analysis based on X-ray photoelectron spectroscopy (XPS) results was introduced. The concentration of Ce-rich conversion coating on the anodized Al based metal matrix composites AI6061/SiCp was then studied according to this method. The results revealed that the Ce conversion coating on the anodized AI6061/SiCp consisted of Al oxide, Ce oxide and Ce hydroxide. The state of Ce element exhibited the mixture of Ce3+ and Ce4+. Some of Cell I was oxidized to be CelV in the outer layer coating. 展开更多
关键词 Ce-rich conversion coating x-ray photoelectron spectroscopy anodization A16061/SiCp
下载PDF
Probing fluorination promoted sodiophilic sites with model systems of F_(16)CuPc and CuPc
2
作者 Yuan Liu Xu Lian +3 位作者 Zhangdi Xie Jinlin Yang Yishui Ding Wei Chen 《Frontiers of Optoelectronics》 EI CSCD 2022年第2期53-64,共12页
Sodium metal batteries(SMBs)are receiving broad attention due to the high specific capacity of sodium metal anodes and the material abundance on earth.However,the growth of dendrites results in poor battery performanc... Sodium metal batteries(SMBs)are receiving broad attention due to the high specific capacity of sodium metal anodes and the material abundance on earth.However,the growth of dendrites results in poor battery performance and severe safety problems,inhibiting the commercial application of SMBs.To stabilize sodium metal anodes,various methods have been developed to optimize the solid electrolyte interphase(SEI)layer and adjust the electroplating/stripping behavior of sodium.Among the methods,developing anode host materials and adding electrolyte additives to build a protective layer are promising and convenient.However,the understanding of the interaction process between sodium metal and those organic materials is still limited,but is essential for the rational design of advanced anode hosts and electrolyte additives.In this study,we use copper(II)hexadecafluorophthalocyanine(F_(16)CuPc),and copper(II)phthalocyanine(CuPc),as model systems to unravel the sodium interaction with polar functional groups by in-situ photoelectron spectroscopy and density functional theory(DFT)calculations.It is found that sodium atoms prefer to interact with the inner pyrrolic nitrogen sites of CuPc,while they prefer to interact with the outer aza bridge nitrogen atoms,owing to Na-F interaction at the Na/F_(16)CuPc interface.Besides,for the both organic molecules,the central Cu(II)ions are reduced to Cu(I)ions by charge transfer from deposited sodium.The fluorine-containing groups are proven to promote the interaction process of sodium in organic materials,which sheds light on the design of functional interfaces in host materials and anode protective layers for sodium metal anodes. 展开更多
关键词 FLUORINATION Phthalocyanines Sodium metal anode Sodiophilic sites In-situ x-ray photoelectron spectroscopy(XPS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部