Maintainability influencing attributes are analyzed, their weight and value calculating methods are given, and the maintainability fuzzy evaluation method is proposed based on the relative closeness. According to the ...Maintainability influencing attributes are analyzed, their weight and value calculating methods are given, and the maintainability fuzzy evaluation method is proposed based on the relative closeness. According to the maintenance task simulation operated in virtual environment, the maintainability virtual evaluation model is built by analyzing the maintenance task for each replaceable unit of product. At last, a case study is given based upon the main landing gear system of a certain type civil aircraft, and the result indicates that the model is suitable for maintainability qualitative evaluation and can support maintainability concurrent design.展开更多
Although accelerated urbanization has led to economic prosperity,it has also resulted in urban heat island effects.Therefore,identifying methods of using limited urban spaces to alleviate heat islands has become an ur...Although accelerated urbanization has led to economic prosperity,it has also resulted in urban heat island effects.Therefore,identifying methods of using limited urban spaces to alleviate heat islands has become an urgent issue.In this study,we assessed the spatiotemporal evolution of urban heat islands within the central urban area of Fuzhou City,China from 2010 to 2019.This assessment was based on a morphological spatial pattern analysis(MSPA)model and an urban thermal environment spatial network constructed us-ing the minimum cumulative resistance(MCR)model.Optimization measures for the spatial network were proposed to provide a theor-etical basis for alleviating urban heat islands.The results show that the heat island area within the study area gradually increased while that of urban cold island area gradually decreased.The core area was the largest of the urban heat island patch landscape elements with a significant impact on other landscape elements,and represented an important factor underlying urban heat island network stability.The thermal environment network revealed a total of 197 thermal environment corridors and 93 heat island sources.These locations were then optimized according to the current land use,which maximized the potential of 1599.83 ha.Optimization based on current land use led to an increase in climate resilience,with effective measures showing reduction in thermal environment spatial network structure and function,contributing to the mitigation of urban heat island.These findings support the use of current land use patterns during urban heat island mitigation measure planning,thus providing an important reference basis for alleviating urban heat island effects.展开更多
针对智能航电系统在非线性耦合运行场景下产生的预期功能安全(safety of the intended functionality,SOTIF)问题,提出一种将系统理论过程分析(systematic theory process analysis,STPA)与决策试验与评价实验法(decision-making trial ...针对智能航电系统在非线性耦合运行场景下产生的预期功能安全(safety of the intended functionality,SOTIF)问题,提出一种将系统理论过程分析(systematic theory process analysis,STPA)与决策试验与评价实验法(decision-making trial and evaluation laboratory,DEMATEL)相结合的致因分析框架。首先,在定义系统级危险的基础上构建安全控制结构,识别其不安全控制行为并提取与智能化缺陷相关的STPA致因要素。接下来,引入毕达哥拉斯模糊加权平均算子和闵可夫斯基距离对传统DEMATEL方法进行优化,专家根据控制反馈回路对致因要素进行评价并计算其中心度与原因度。最后,分析STPA致因要素与SOTIF致因属性之间的映射关系,给出关键致因要素的风险减缓措施。以单一飞行员驾驶(single-pilot operation,SPO)模式下的虚拟驾驶员助理系统为例说明了所提方法的可行性与有效性。研究结果表明,改进的STPA-DEMATEL方法可以有效识别关键致因要素,且能够克服专家评价的模糊性与不确定性,为智能航电系统的安全性设计提供了参考依据。展开更多
IEEE 802.11ah is a new Wi-Fi standard for sub-1Ghz communications,aiming to address the challenges of the Internet of Things(IoT).Significant changes in the legacy 802.11 standards have been proposed to improve the ne...IEEE 802.11ah is a new Wi-Fi standard for sub-1Ghz communications,aiming to address the challenges of the Internet of Things(IoT).Significant changes in the legacy 802.11 standards have been proposed to improve the network performance in high contention scenarios,the most important of which is the Restricted Access Window(RAW)mechanism.This mechanism promises to increase the throughput and energy efficiency by dividing stations into different groups.Under this scheme,only the stations belonging to the same group may access the channel,which reduces the collision probability in dense scenarios.However,the standard does not define the RAW grouping strategy.In this paper,we develop a new mathematical model based on the renewal theory,which allows for tracking the number of transmissions within the limited RAW slot contention period defined by the standard.We then analyze and evaluate the performance of RAW mechanism.We also introduce a grouping scheme to organize the stations and channel access time into different groups within the RAW.Furthermore,we propose an algorithm to derive the RAW configuration parameters of a throughput maximizing grouping scheme.We additionally explore the impact of channel errors on the contention within the time-limited RAW slot and the overall RAW optimal configuration.The presented analytical framework can be applied to many other Wi-Fi standards that integrate periodic channel reservations.Extensive simulations using the MATLAB software validate the analytical model and prove the effectiveness of the proposed RAW configuration scheme.展开更多
The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate ev...The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate evaluation method does not make full use of the fuzzy information and uncertain information in the equipment system-of-systems(ESoS),and the Bayesian network is an effective tool to solve the uncertain information,a new ESoSA contribution rate evaluation method based on the fuzzy Bayesian network(FBN)is proposed.Firstly,based on the operation loop theory,an ESoSA is constructed considering three aspects:reconnaissance equipment,decision equipment,and strike equipment.Next,the fuzzy set theory is introduced to construct the FBN of ESoSA to deal with fuzzy information and uncertain information.Furthermore,the fuzzy importance index of the root node of the FBN is used to calculate the contribution rate of the ESoSA,and the ESoSA contribution rate evaluation model based on the root node fuzzy importance is established.Finally,the feasibility and rationality of this method are validated via an empirical case study of aviation ESoSA.Compared with traditional methods,the evaluation method based on FBN takes various failure states of equipment into consideration,is free of acquiring accurate probability of traditional equipment failure,and models the uncertainty of the relationship between equipment.The proposed method not only supplements and improves the ESoSA contribution rate assessment method,but also broadens the application scope of the Bayesian network.展开更多
This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the ...This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the dangerousness of this geological disaster.The losses that are caused by water and mud inrush are taken into consideration to account for its harmfulness.Then a risk evaluation model based on the dangerousness-harmfulness evaluation indicator system is constructed,which is more convincing in comparison with the traditional methods.The catastrophe theory is used to evaluate the risk level of water and mud inrush and it has great advantage in handling problems involving discontinuous catastrophe processes.To validate the proposed approach,the Qiyueshan tunnel of Yichang-Wanzhou Railway is taken as an example in which four target segments are evaluated using the risk evaluation model.Finally,the evaluation results are compared with the excavation data,which shows that the risk levels predicted by the proposed approach are in good agreements with that observed in engineering.In conclusion,the catastrophe theory-based risk evaluation model is an efficient and effective approach for water and mud inrush in karst tunnels.展开更多
Seismic risk evaluation(SRE) in early stages(e.g., project planning and preliminary design)for a mountain tunnel located in seismic areas has the same importance as that in final stages(e.g.,performance-based design, ...Seismic risk evaluation(SRE) in early stages(e.g., project planning and preliminary design)for a mountain tunnel located in seismic areas has the same importance as that in final stages(e.g.,performance-based design, structural analysis, and optimization). SRE for planning mountain tunnels bridges the gap between the planning on the macro level and the design/analysis on the micro level regarding the risk management of infrastructural systems. A transition from subjective or qualitative description to objective or quantitative quantification of seismic risk is aimed to improve the seismic behavior of the mountain tunnel and thus reduce the associated seismic risk. A new method of systematic SRE for the planning mountain tunnel was presented herein. The method employs extension theory(ET)and an ET-based improved analytical hierarchy process. Additionally, a new risk-classification criterion is proposed to classify and quantify the seismic risk for a planning mountain tunnel. This SRE method is applied to a mountain tunnel in southwest China, using the extension model based on matter element theory and dependent function operation.The reasonability and flexibility of the SRE method for application to the mountain tunnel are illustrated.According to different seismic risk levels and classification criteria, methods and measures for improving the seismic design are proposed, which can reduce the seismic risk and provide a frame of reference for elaborate seismic design.展开更多
为了进一步提高电能质量评估结果的精细化程度,提出了一种基于灰色关联度分析(Grey Relational Analysis,GRA)、二元语义(Binary Semantics,BS)和逼近理想解排序法(Technique for Order Preference by Similarity to an Ideal Solution,...为了进一步提高电能质量评估结果的精细化程度,提出了一种基于灰色关联度分析(Grey Relational Analysis,GRA)、二元语义(Binary Semantics,BS)和逼近理想解排序法(Technique for Order Preference by Similarity to an Ideal Solution,TOPSIS)的电能质量综合评估方法。首先建立电能质量综合评估指标体系;其次利用G1法确定主观权重,采用指标相关法(Criteria Importance Though Intercrieria Correlation,CITIC)确定客观权重,并引入博弈论优化主客观综合权重系数,得到各项指标的综合权重;然后使用TOPSIS方法计算监测点指标数据与各指标对应的最优、最劣解之间的欧氏距离,并结合灰色关联度计算出相对贴近度,将其作为确定电能质量等级的判据并进行一次评估;最后利用二元语义法对一次评估结果中电能质量等级相同的监测点进行更为精细的二次评估。仿真算例结果验证该方法的有效性和精细性。展开更多
With the rapid development of China’s economy,the scale of the city has been continuously expanding,industrial enterprises have been increasing,the discharge of multiple pollutants has reached the top of the world,an...With the rapid development of China’s economy,the scale of the city has been continuously expanding,industrial enterprises have been increasing,the discharge of multiple pollutants has reached the top of the world,and the environmental problems become more and more serious.The air pollution problem is particularly prominent.Air quality has become a daily concern for people.In order to control air pollution,it is necessary to grasp the air quality situation in an all-round way.It is necessary to evaluate air quality.Accurate results of air quality evaluation can help people know more about air quality.In this paper,refers to previous research results and different evaluation methods,combined with artificial neural network,fuzzy theory,genetic algorithm,GA-BP hybrid algorithm based on fuzzy theory is proposed to evaluate air quality.At the same time,for the problem that the two-grade standard of air quality annual evaluation is not suitable for practical application,the four-grade standard for annual air quality evaluation has been proposed,and its practicality has been verified through experiments.By setting contrast experiments and comparing the air quality evaluation model based on standard BP algorithm,it is proved that the fuzzy GA-BP evaluation model is better than the standard BP model,both in efficiency and accuracy.展开更多
The fuzziness exists in spatial distribution of geographic data of land suitability evaluation processes,which makes it difficult to quantify land boundaries by using traditional binary logic-based overlay model.Aimin...The fuzziness exists in spatial distribution of geographic data of land suitability evaluation processes,which makes it difficult to quantify land boundaries by using traditional binary logic-based overlay model.Aiming at this limitation,an ecological suitability evaluation analysis model was presented based on fuzzy theory and a research on urban growth boundary(UGB) of the Great-Hexi Leading District(GHLD) of Changsha was conducted.With the support of GIS,RS and MATLAB,slope,elevation,vegetation,soil productivity,soil permeability,water body and land use are selected as the input of model according to the characteristic properties of soil and terrain in red soil hilly areas.The running result of this model indicates that the ratios of highly suitable land,suitable land,moderately suitable land and unsuitable land in GHLD are 18.75%,10.31%,64.16%,6.78%,respectively.This result accords with spatial structure worked out by Space Development Strategy Planning of GHLD,Based on this result,several suggestions are made to guide UGB developments in future.展开更多
The comprehensive evaluation of rural landscapes is the theoretical basis and evaluation system of tourism planning and landscape design with the goal of comprehensive revitalization of rural landscapes. It is an impo...The comprehensive evaluation of rural landscapes is the theoretical basis and evaluation system of tourism planning and landscape design with the goal of comprehensive revitalization of rural landscapes. It is an important component of rural landscapes research. Based on the AVC theory, this study constructed a comprehensive evaluation system of rural landscapes, determined the indicator score by means of the combination of qualitative and quantitative methods and the weights indicator by the analytic hierarchy process(AHP), and established an evaluation model to comprehensively evaluate the landscapes of Nandoujiao Village in Xi'an, Shaanxi Province. The results showed that the comprehensive landscape score of Nandoujiao Village fell into the good category, whose rural economic vitality was high, followed by social attraction and environmental carrying capacity, which provided a good resource basis for the development of rural tourism. However, its single industrial structure and the low landscape diversity had limited the development of rural tourism.展开更多
基金National Natural Science Foundation of China-Joint Found of Civil Aviation Research (60572171)
文摘Maintainability influencing attributes are analyzed, their weight and value calculating methods are given, and the maintainability fuzzy evaluation method is proposed based on the relative closeness. According to the maintenance task simulation operated in virtual environment, the maintainability virtual evaluation model is built by analyzing the maintenance task for each replaceable unit of product. At last, a case study is given based upon the main landing gear system of a certain type civil aircraft, and the result indicates that the model is suitable for maintainability qualitative evaluation and can support maintainability concurrent design.
基金Under the auspices of Special Funds for Education and Scientific Research of the Department of Finance(Min Cai Zhi[2022]No.840)Fujian Province Key Laboratory of Geographic Information Technology and Resource Optimization Construction Project(No.PTJH17014)。
文摘Although accelerated urbanization has led to economic prosperity,it has also resulted in urban heat island effects.Therefore,identifying methods of using limited urban spaces to alleviate heat islands has become an urgent issue.In this study,we assessed the spatiotemporal evolution of urban heat islands within the central urban area of Fuzhou City,China from 2010 to 2019.This assessment was based on a morphological spatial pattern analysis(MSPA)model and an urban thermal environment spatial network constructed us-ing the minimum cumulative resistance(MCR)model.Optimization measures for the spatial network were proposed to provide a theor-etical basis for alleviating urban heat islands.The results show that the heat island area within the study area gradually increased while that of urban cold island area gradually decreased.The core area was the largest of the urban heat island patch landscape elements with a significant impact on other landscape elements,and represented an important factor underlying urban heat island network stability.The thermal environment network revealed a total of 197 thermal environment corridors and 93 heat island sources.These locations were then optimized according to the current land use,which maximized the potential of 1599.83 ha.Optimization based on current land use led to an increase in climate resilience,with effective measures showing reduction in thermal environment spatial network structure and function,contributing to the mitigation of urban heat island.These findings support the use of current land use patterns during urban heat island mitigation measure planning,thus providing an important reference basis for alleviating urban heat island effects.
文摘针对智能航电系统在非线性耦合运行场景下产生的预期功能安全(safety of the intended functionality,SOTIF)问题,提出一种将系统理论过程分析(systematic theory process analysis,STPA)与决策试验与评价实验法(decision-making trial and evaluation laboratory,DEMATEL)相结合的致因分析框架。首先,在定义系统级危险的基础上构建安全控制结构,识别其不安全控制行为并提取与智能化缺陷相关的STPA致因要素。接下来,引入毕达哥拉斯模糊加权平均算子和闵可夫斯基距离对传统DEMATEL方法进行优化,专家根据控制反馈回路对致因要素进行评价并计算其中心度与原因度。最后,分析STPA致因要素与SOTIF致因属性之间的映射关系,给出关键致因要素的风险减缓措施。以单一飞行员驾驶(single-pilot operation,SPO)模式下的虚拟驾驶员助理系统为例说明了所提方法的可行性与有效性。研究结果表明,改进的STPA-DEMATEL方法可以有效识别关键致因要素,且能够克服专家评价的模糊性与不确定性,为智能航电系统的安全性设计提供了参考依据。
基金supported by the Spanish Ministry of Science,Education and Universities,the European Regional Development Fund and the State Research Agency,Grant No.RTI2018-098156-B-C52.
文摘IEEE 802.11ah is a new Wi-Fi standard for sub-1Ghz communications,aiming to address the challenges of the Internet of Things(IoT).Significant changes in the legacy 802.11 standards have been proposed to improve the network performance in high contention scenarios,the most important of which is the Restricted Access Window(RAW)mechanism.This mechanism promises to increase the throughput and energy efficiency by dividing stations into different groups.Under this scheme,only the stations belonging to the same group may access the channel,which reduces the collision probability in dense scenarios.However,the standard does not define the RAW grouping strategy.In this paper,we develop a new mathematical model based on the renewal theory,which allows for tracking the number of transmissions within the limited RAW slot contention period defined by the standard.We then analyze and evaluate the performance of RAW mechanism.We also introduce a grouping scheme to organize the stations and channel access time into different groups within the RAW.Furthermore,we propose an algorithm to derive the RAW configuration parameters of a throughput maximizing grouping scheme.We additionally explore the impact of channel errors on the contention within the time-limited RAW slot and the overall RAW optimal configuration.The presented analytical framework can be applied to many other Wi-Fi standards that integrate periodic channel reservations.Extensive simulations using the MATLAB software validate the analytical model and prove the effectiveness of the proposed RAW configuration scheme.
基金supported by the National Key Research and Development Project(2018YFB1700802)the National Natural Science Foundation of China(72071206)the Science and Technology Innovation Plan of Hunan Province(2020RC4046).
文摘The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate evaluation method does not make full use of the fuzzy information and uncertain information in the equipment system-of-systems(ESoS),and the Bayesian network is an effective tool to solve the uncertain information,a new ESoSA contribution rate evaluation method based on the fuzzy Bayesian network(FBN)is proposed.Firstly,based on the operation loop theory,an ESoSA is constructed considering three aspects:reconnaissance equipment,decision equipment,and strike equipment.Next,the fuzzy set theory is introduced to construct the FBN of ESoSA to deal with fuzzy information and uncertain information.Furthermore,the fuzzy importance index of the root node of the FBN is used to calculate the contribution rate of the ESoSA,and the ESoSA contribution rate evaluation model based on the root node fuzzy importance is established.Finally,the feasibility and rationality of this method are validated via an empirical case study of aviation ESoSA.Compared with traditional methods,the evaluation method based on FBN takes various failure states of equipment into consideration,is free of acquiring accurate probability of traditional equipment failure,and models the uncertainty of the relationship between equipment.The proposed method not only supplements and improves the ESoSA contribution rate assessment method,but also broadens the application scope of the Bayesian network.
基金Project(51378510)supported by National Natural Science Foundation of China。
文摘This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the dangerousness of this geological disaster.The losses that are caused by water and mud inrush are taken into consideration to account for its harmfulness.Then a risk evaluation model based on the dangerousness-harmfulness evaluation indicator system is constructed,which is more convincing in comparison with the traditional methods.The catastrophe theory is used to evaluate the risk level of water and mud inrush and it has great advantage in handling problems involving discontinuous catastrophe processes.To validate the proposed approach,the Qiyueshan tunnel of Yichang-Wanzhou Railway is taken as an example in which four target segments are evaluated using the risk evaluation model.Finally,the evaluation results are compared with the excavation data,which shows that the risk levels predicted by the proposed approach are in good agreements with that observed in engineering.In conclusion,the catastrophe theory-based risk evaluation model is an efficient and effective approach for water and mud inrush in karst tunnels.
基金financially supported by the National Key Research and Development Program of China (2016YFB1200401)the Western Construction Project of the Ministry of Transport (Grant No. 2015318J29040)
文摘Seismic risk evaluation(SRE) in early stages(e.g., project planning and preliminary design)for a mountain tunnel located in seismic areas has the same importance as that in final stages(e.g.,performance-based design, structural analysis, and optimization). SRE for planning mountain tunnels bridges the gap between the planning on the macro level and the design/analysis on the micro level regarding the risk management of infrastructural systems. A transition from subjective or qualitative description to objective or quantitative quantification of seismic risk is aimed to improve the seismic behavior of the mountain tunnel and thus reduce the associated seismic risk. A new method of systematic SRE for the planning mountain tunnel was presented herein. The method employs extension theory(ET)and an ET-based improved analytical hierarchy process. Additionally, a new risk-classification criterion is proposed to classify and quantify the seismic risk for a planning mountain tunnel. This SRE method is applied to a mountain tunnel in southwest China, using the extension model based on matter element theory and dependent function operation.The reasonability and flexibility of the SRE method for application to the mountain tunnel are illustrated.According to different seismic risk levels and classification criteria, methods and measures for improving the seismic design are proposed, which can reduce the seismic risk and provide a frame of reference for elaborate seismic design.
文摘为了进一步提高电能质量评估结果的精细化程度,提出了一种基于灰色关联度分析(Grey Relational Analysis,GRA)、二元语义(Binary Semantics,BS)和逼近理想解排序法(Technique for Order Preference by Similarity to an Ideal Solution,TOPSIS)的电能质量综合评估方法。首先建立电能质量综合评估指标体系;其次利用G1法确定主观权重,采用指标相关法(Criteria Importance Though Intercrieria Correlation,CITIC)确定客观权重,并引入博弈论优化主客观综合权重系数,得到各项指标的综合权重;然后使用TOPSIS方法计算监测点指标数据与各指标对应的最优、最劣解之间的欧氏距离,并结合灰色关联度计算出相对贴近度,将其作为确定电能质量等级的判据并进行一次评估;最后利用二元语义法对一次评估结果中电能质量等级相同的监测点进行更为精细的二次评估。仿真算例结果验证该方法的有效性和精细性。
文摘With the rapid development of China’s economy,the scale of the city has been continuously expanding,industrial enterprises have been increasing,the discharge of multiple pollutants has reached the top of the world,and the environmental problems become more and more serious.The air pollution problem is particularly prominent.Air quality has become a daily concern for people.In order to control air pollution,it is necessary to grasp the air quality situation in an all-round way.It is necessary to evaluate air quality.Accurate results of air quality evaluation can help people know more about air quality.In this paper,refers to previous research results and different evaluation methods,combined with artificial neural network,fuzzy theory,genetic algorithm,GA-BP hybrid algorithm based on fuzzy theory is proposed to evaluate air quality.At the same time,for the problem that the two-grade standard of air quality annual evaluation is not suitable for practical application,the four-grade standard for annual air quality evaluation has been proposed,and its practicality has been verified through experiments.By setting contrast experiments and comparing the air quality evaluation model based on standard BP algorithm,it is proved that the fuzzy GA-BP evaluation model is better than the standard BP model,both in efficiency and accuracy.
基金Project(2006BAJ04A13) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan of ChinaProject(2009FJ4056) supported by the Key Project of Science and Technology Program of Hunan Province,ChinaProject(20090161120014) supported by the New Teachers Fund of Department of Education,China
文摘The fuzziness exists in spatial distribution of geographic data of land suitability evaluation processes,which makes it difficult to quantify land boundaries by using traditional binary logic-based overlay model.Aiming at this limitation,an ecological suitability evaluation analysis model was presented based on fuzzy theory and a research on urban growth boundary(UGB) of the Great-Hexi Leading District(GHLD) of Changsha was conducted.With the support of GIS,RS and MATLAB,slope,elevation,vegetation,soil productivity,soil permeability,water body and land use are selected as the input of model according to the characteristic properties of soil and terrain in red soil hilly areas.The running result of this model indicates that the ratios of highly suitable land,suitable land,moderately suitable land and unsuitable land in GHLD are 18.75%,10.31%,64.16%,6.78%,respectively.This result accords with spatial structure worked out by Space Development Strategy Planning of GHLD,Based on this result,several suggestions are made to guide UGB developments in future.
基金Sponsored by Basic Research Project of Northwest A&F University (Z109021506 Z109021705)
文摘The comprehensive evaluation of rural landscapes is the theoretical basis and evaluation system of tourism planning and landscape design with the goal of comprehensive revitalization of rural landscapes. It is an important component of rural landscapes research. Based on the AVC theory, this study constructed a comprehensive evaluation system of rural landscapes, determined the indicator score by means of the combination of qualitative and quantitative methods and the weights indicator by the analytic hierarchy process(AHP), and established an evaluation model to comprehensively evaluate the landscapes of Nandoujiao Village in Xi'an, Shaanxi Province. The results showed that the comprehensive landscape score of Nandoujiao Village fell into the good category, whose rural economic vitality was high, followed by social attraction and environmental carrying capacity, which provided a good resource basis for the development of rural tourism. However, its single industrial structure and the low landscape diversity had limited the development of rural tourism.