A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertai...A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertainty are estimated by the T-S fuzzy system, and a robust adaptive control law is designed by the Lyapunov theory. Irrespective of whether the dimensions of the system and the rules of the fuzzy system are large or small, there is only one parameter adjusting on line. Uniformly ultimately boundedness of all signals of the composite closed-loop system are proved by theory analysis. Finally, a numerical example is studied based on the proposed method. The simulation results demonstrate the effectiveness and robustness of the control scheme.展开更多
For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic des...For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic description or multi-model description in that the weighting coef-ficients have respective meanings. They, however, have stability aspect in common. By adopting astability condition for polytopic systems obtained via PDLF, and combining the properties of T-Sfuzzy systems, new results are given in this paper. An example shows that by applying the newresults, the stability conditions that can be distinguished are less conservative.展开更多
This paper deals with the problem of guaranteed cost control for nonlinear systems with time-varying delays which is represented by Takagi-Sugeno (T-S) fuzzy models with time-varying delays.The derivatives of time-v...This paper deals with the problem of guaranteed cost control for nonlinear systems with time-varying delays which is represented by Takagi-Sugeno (T-S) fuzzy models with time-varying delays.The derivatives of time-varying delay are not necessary to be bounded.Based on the free weighting matrix method,sufficient conditions for the existence of fuzzy guaranteed cost controller via state feedback are given in terms of linear matrix inequalities (LMIs).A minimizing method is also proposed to search the suboptimal upper bound of the guaranteed cost function.The results are delay-dependent but contain delay-independent criteria as a special case.A numerical example is presented to demonstrate the effectiveness and less conservativeness of our work.展开更多
Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this ...Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this two-levels T-S fuzzy model.Also a T-S fuzzy observer of NCS is designed base on this two-levels T-S fuzzy model.All these results present a new approach for networked control system analysis and design.展开更多
By means of matrix decomposition method a criterion is presented for the admissibility of T-S fuzzy descriptor system. Then, the problem of passivity control is studied for a kind of T-S fuzzy descriptor system with u...By means of matrix decomposition method a criterion is presented for the admissibility of T-S fuzzy descriptor system. Then, the problem of passivity control is studied for a kind of T-S fuzzy descriptor system with uncertain parameters, and sufficient conditions which make the closed-loop system admissible and strictly passive are obtained based on linear matrix inequality (LMI). The nonstrict LMIs restricted conditions which characterize the descriptor system are transformed into strict ones, so testing admissibility and passivity of the system can be finished simultaneously. The design scheme of state feedback controller is also obtained. Finally, a numerical example is given to show the validity and feasibility of the proposed approach.展开更多
A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and th...A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.展开更多
基金the National Natural Science Foundation of China (90716028 and 90405011).
文摘A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertainty are estimated by the T-S fuzzy system, and a robust adaptive control law is designed by the Lyapunov theory. Irrespective of whether the dimensions of the system and the rules of the fuzzy system are large or small, there is only one parameter adjusting on line. Uniformly ultimately boundedness of all signals of the composite closed-loop system are proved by theory analysis. Finally, a numerical example is studied based on the proposed method. The simulation results demonstrate the effectiveness and robustness of the control scheme.
文摘For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic description or multi-model description in that the weighting coef-ficients have respective meanings. They, however, have stability aspect in common. By adopting astability condition for polytopic systems obtained via PDLF, and combining the properties of T-Sfuzzy systems, new results are given in this paper. An example shows that by applying the newresults, the stability conditions that can be distinguished are less conservative.
基金supported by the National Natural Science Foundation of China(No.60804011,60474058)the Science and Technology Project of Liaoning Provincial Education Department
文摘This paper deals with the problem of guaranteed cost control for nonlinear systems with time-varying delays which is represented by Takagi-Sugeno (T-S) fuzzy models with time-varying delays.The derivatives of time-varying delay are not necessary to be bounded.Based on the free weighting matrix method,sufficient conditions for the existence of fuzzy guaranteed cost controller via state feedback are given in terms of linear matrix inequalities (LMIs).A minimizing method is also proposed to search the suboptimal upper bound of the guaranteed cost function.The results are delay-dependent but contain delay-independent criteria as a special case.A numerical example is presented to demonstrate the effectiveness and less conservativeness of our work.
基金National Natural Science Foundation of china(60274014,60574088)
文摘Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this two-levels T-S fuzzy model.Also a T-S fuzzy observer of NCS is designed base on this two-levels T-S fuzzy model.All these results present a new approach for networked control system analysis and design.
基金Supported by National Natural Science Foundation of P. R, China (60574011)the Distinguished Teacher Funds of Liaoning Universities (124210)the Key Laboratory Funds of Liaoning Universities of Intelligent Control Theory and Applications
文摘By means of matrix decomposition method a criterion is presented for the admissibility of T-S fuzzy descriptor system. Then, the problem of passivity control is studied for a kind of T-S fuzzy descriptor system with uncertain parameters, and sufficient conditions which make the closed-loop system admissible and strictly passive are obtained based on linear matrix inequality (LMI). The nonstrict LMIs restricted conditions which characterize the descriptor system are transformed into strict ones, so testing admissibility and passivity of the system can be finished simultaneously. The design scheme of state feedback controller is also obtained. Finally, a numerical example is given to show the validity and feasibility of the proposed approach.
基金This Project was supported by the National Natural Science Foundation of China (60374037 and 60574036)the Opening Project Foundation of National Lab of Industrial Control Technology (0708008).
文摘A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.