期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Controllable fabrication of FeCoS_(4) nanoparticles/S-doped bowl-shaped hollow carbon as efficient lithium storage anode
1
作者 Ming Zhou Mengrong Wu +8 位作者 Haiwei Yu Xiangjun Zheng Kuan Shen Xingmei Guo Yuanjun Liu Fu Cao Hongxing Gu Qinghong Kong Junhao Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期78-88,共11页
To address the low conductivity and easy agglomeration of transition metal sulfide nanoparticles,FeCoS_(4) nanoparticles embedded in S-doped hollow carbon(FeCoS_(4)@S-HC)composites were successfully fabricated through... To address the low conductivity and easy agglomeration of transition metal sulfide nanoparticles,FeCoS_(4) nanoparticles embedded in S-doped hollow carbon(FeCoS_(4)@S-HC)composites were successfully fabricated through a combination of hydrothermal processes and sulfidation treatment.The unique bowlshaped FeCoS_(4)/S-HC composites exhibit excellent structural stability with a high specific surface area of 303.7 m^(2)·g^(-1) and a pore volume of 0.93 cm^(3)·g^(-1).When applied as anode material for lithium-ion batteries,the FeCoS_(4)@S-HC anode exhibits efficient lithium storage with high reversible specific capacity(970.2 mA·h·g^(-1) at 100 mA·g^(-1))and enhanced cycling stability(574 mA·h·g^(-1) at 0.2 A·g^(-1) after 350 cycles,a capacity retention of 84%).The excellent lithium storage is attributed to the fact that the bimetallic FeCoS_(4) nanoparticles with abundant active sites can accelerate the electrochemical reaction kinetics,and the bowl-shaped S-HC structure can provide a stable mechanical structure to suppress volume expansion. 展开更多
关键词 Bimetallic sulfides Bowl-shaped hollow carbon s doping Buffering volume expand Lithium-ion batteries
下载PDF
S-doped mesoporous graphene modified separator for high performance lithium-sulfur batteries
2
作者 Xinlong Ma Chenggen Xu +8 位作者 Yin Yang Dong Sun Kai Zhao Changbo Lu Peng Jin Yiting Chong Sirawit Pruksawan Zhihua Xiao Fuke Wang 《Materials Reports(Energy)》 EI 2024年第3期60-68,共9页
Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,t... Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,the practical application of LSB is seriously hampered by its short cycle life and high self-charge owing to the apparent shuttle effect of soluble lithium polysulfides.Using MgSO_(4)@MgO composite as both template and dopant,template-guided S-doped mesoporous graphene(SMG)is prepared via the fluidized-bed chemical vapor deposition method.As the polypropylene(PP)modifier,SMG with high specific surface area,abundant mesoporous structures and moderate S doping content offers a wealth of physical and chemical adsorptive sites and reduced interfacial contact resistance,thereby restraining the serious shuttle effects of lithium polysulfides.Consequently,the LSB configured with mesoporous graphene(MG)as S host material and SMG as a separator modifier exhibits an enhanced electrochemical performance with a high average capacity of 955.64 mA h g^(-1) at 1C and a small capacity decay rate of 0.109%per cycle.Additionally,the density functional theory(DFT)calculation models have been rationally constructed and demonstrated that the doped S atoms in SMG possess higher binding energy to lithium polysulfides than that in MG,indicating that the SMG/PP separator can effectively capture soluble lithium polysulfides via chemical binding forces.This work would provide valuable insight into developing a versatile carbon-based separator modifier for LSB. 展开更多
关键词 Fluidized-bed chemical vapor deposition Mesoporous graphene s doping separator modification Lithium-sulfur battery
下载PDF
A cascade of in situ conversion of bicarbonate to CO_(2) and CO_(2) electroreduction in a flow cell with a Ni-N-S catalyst
3
作者 Linghui Kong Min Wang +6 位作者 Yongxiao Tuo Shanshan Zhou Jinxiu Wang Guangbo Liu Xuejing Cui Jiali Wang Luhua Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期183-193,I0005,共12页
Combination of CO_(2) capture using inorganic alkali with subsequently electrochemical conversion of the resultant HCO_(3)^(-)to high-value chemicals is a promising route of low cost and high efficiency.The electroche... Combination of CO_(2) capture using inorganic alkali with subsequently electrochemical conversion of the resultant HCO_(3)^(-)to high-value chemicals is a promising route of low cost and high efficiency.The electrochemical reduction of HCO_(3)^(-)is challenging due to the inaccessible of negatively charged molecular groups to the electrode surface.Herein,we adopt a comprehensive strategy to tackle this challenge,i.e.,cascade of in situ chemical conversion of HCO_(3)^(-)to CO_(2) and CO_(2) electrochemical reduction in a flow cell.With a tailored Ni-N-S single atom catalyst(SACs),where sulfur(S)atoms located in the second shell of Ni center,the CO_(2)electroreduction(CO_(2)ER)to CO is boosted.The experimental results and density functional theory(DFT)calculations reveal that the introduction of S increases the p electron density of N atoms near Ni atom,thereby stabilizing^(*)H over N and boosting the first proton coupled electron transfer process of CO_(2)ER,i.e.,^(*)+e^(-)+^(*)H+^(*)CO_(2)→^(*)COOH.As a result,the obtained catalyst exhibits a high faradaic efficiency(FE_(CO)~98%)and a low overpotential of 425 mV for CO production as well as a superior turnover frequency(TOF)of 47397 h^(-1),outcompeting most of the reported Ni SACs.More importantly,an extremely high FECOof 90%is achieved at 50 mA cm^(-2)in the designed membrane electrode assembly(MEA)cascade electrolyzer fed with liquid bicarbonate.This work not only highlights the significant role of the second coordination on the first coordination shell of the central metal for CO_(2)ER,but also provides an alternative and feasible strategy to realize the electrochemical conversion of HCO_(3)^(-)to high-value chemicals. 展开更多
关键词 s doped Ni-N-C single atom catalysts CO_(2)electrochemical reduction DFT calculations Membrane electrode assembly Reduction of bicarbonate
下载PDF
Regulated electronic structure and improved electrocatalytic performances of S-doped FeWO4 for rechargeable zinc-air batteries 被引量:3
4
作者 Huan Wang Li Xu +3 位作者 Daijie Deng Xiaozhi Liu Henan Li Dong Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期359-367,I0009,共10页
The exploration of active and long-lived oxygen reduction reaction(ORR)catalysts for the commercialization of zinc-air batteries are of immense significance but challenging.Herein,the sulfur doped FeWO_(4)embedded in ... The exploration of active and long-lived oxygen reduction reaction(ORR)catalysts for the commercialization of zinc-air batteries are of immense significance but challenging.Herein,the sulfur doped FeWO_(4)embedded in the multi-dimensional nitrogen-doped carbon structure(S-FeWO_(4)/NC)was successfully synthesized.The doped S atoms optimized the charge distribution in FeWO_(4)and enhanced the intrinsic activity.At the same time,S doping accelerated the formation of reaction intermediates during the adsorption reduction of O_(2)on the surface of S-FeWO_(4)/NC.Accordingly,the S-FeWO_(4)/NC catalyst showed more positive half-wave potential(0.85 V)and better stability than that of the FeWO_(4)/NC catalyst.Furthermore,the S-FeWO_(4)/NC-based zinc-air battery exhibited considerable power density of 150.3m W cm^(-2),high specific capacity of 912.7 m A h g^(-1),and prominent cycle stability up to 220 h.This work provides an assistance to the development of cheap and efficient tungsten-based oxygen reduction catalysts and the promotion of its application in the zinc-air battery. 展开更多
关键词 s doping FeWO4 Oxygen reduction reaction Zinc-air batteries
下载PDF
Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries 被引量:8
5
作者 Hao-Jie Liang Zhen-Yi Gu +7 位作者 Xue-Ying Zheng Wen-Hao Li Ling-Yun Zhu Zhong-Hui Sun Yun-Feng Meng Hai-Yue Yu Xian-Kun Hou Xing-Long Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期589-598,I0012,共11页
Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To pr... Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs. 展开更多
关键词 K-ion batteries Anode materials Carbon/carbon composite s doping Cyclic stability DFT calculation
下载PDF
Size control synthesis of sulfur doped titanium dioxide (anatase) nanoparticles,its optical property and its photo catalytic reactivity for CO_2 + H_2O conversion and phenol degradation 被引量:8
6
作者 S. Tajammul Hussain Khaiber Khan R. Hussain 《Journal of Natural Gas Chemistry》 CAS CSCD 2009年第4期383-391,共9页
Sulfur doped anatase TiO2 nanoparticles (3 nm- 12 nm) were synthesized by the reaction of titanium tetrachloride, water and sulfuric acid with addition of 3 M NaOH at room temperature. The electro-optical and photoc... Sulfur doped anatase TiO2 nanoparticles (3 nm- 12 nm) were synthesized by the reaction of titanium tetrachloride, water and sulfuric acid with addition of 3 M NaOH at room temperature. The electro-optical and photocatalytic properties of the synthesized sulfur doped TiO2 nanoparticles were studied along with Degussa commercial TiO2 particles (24 nm). The results show that band gap of TiO2 particles decreases from 3.31 to 3.25 eV and for that of commercial TiO2 to 3.2 eV when the particle sizes increased from 3 nm to 12 nm with increase in sulfur doping. The results of the photocatalytic activity under UV and sun radiation show maximum phenol conversion at the particle size of 4 nm at 4.80% S-doping. Similar results are obtained using UV energy for both phenol conversion and conversion of CO2+H2O in which formation of methanol, ethanol and proponal is observed. Production of methanol is also achieved on samples with a particle size of 8 and 12 nm and sulfur doping of 4.80% and 5.26%. For TiO2 particle of 4 nm without S doping, the production of methanol, ethanol and proponal was lower as compared to the S-doped particles. This is attributed to the combined electronic effect and band gap change, S dopant, specific surface area and the light source used. 展开更多
关键词 s doped TiO2 PHOTOCATALYsT CO2 conversion phenol degradation UV IR radiation
下载PDF
Fe,N,S-doped porous carbon as oxygen reduction reaction catalyst in acidic medium with high activity and durability synthesized using CaCl_2 as template 被引量:3
7
作者 Chi Chen Zhiyou Zhou +4 位作者 Yucheng Wang Xue Zhang Xiaodong Yang Xinsheng Zhang Shigang Sun 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第4期673-682,共10页
Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped p... Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped porous carbon(FeNS‐PC)was synthesized using melamine formaldehyderesin as C and N precursors,Fe(SCN)3as Fe and S precursors,and CaCl2as a template via a two‐stepheat treatment without a harsh template removal step.The results show that the catalyst treated at900℃(FeNS‐PC‐900)had a high surface area of775m2/g,a high mass activity of10.2A/g in anacidic medium,and excellent durability;the half‐wave potential decreased by only20mV after10000potential cycles.The FeNS‐PC‐900catalyst was used as the cathode in a proton exchangemembrane fuel cell and delivered a peak power density of0.49W/cm2.FeNS‐PC‐900therefore hasgood potential for use in practical applications. 展开更多
关键词 Non‐precious metal catalyst Oxygen reduction reaction Proton exchange membrane fuel cell Fe N s‐doped porous carbon Melamine formaldehyde resin
下载PDF
Photoinduced Second Harmonic Generation of Bi_2S_3 Microcrystallite Doped Silica Glass 被引量:2
8
作者 Letters Hongbing CHEN and Hai ping XIA Institute of Optoelectric Materials, Ningbo University, Ningbo 315211, China Congshan ZHU and Fuxi GAN Shanghai Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第5期565-566,共1页
Silica glasses doped with Bi2S3 microcystallite was prepared by the sol-gel process. Photoinduced second harmonic generation (SHG) was observed in the glass when it was irradiated with intense 1.06 mum and frequency d... Silica glasses doped with Bi2S3 microcystallite was prepared by the sol-gel process. Photoinduced second harmonic generation (SHG) was observed in the glass when it was irradiated with intense 1.06 mum and frequency doubled laser beams from a mode-locked Nd: YAG laser. It was found that the signal intensity increased with the irradiating time and approached a saturation gradually. The effect may be explained reasonably by the DC field model. 展开更多
关键词 sHG Photoinduced second Harmonic Generation of Bi2s3 Microcrystallite Doped silica Glass BI
下载PDF
Highly dispersed few-layer MoS_2 nanosheets on S, N co-doped carbon for electrocatalytic H_2 production 被引量:2
9
作者 Shixin Hua Dan Qu +5 位作者 Li An Guangcheng Xi Ge Chen Fan Li Zhijun Zhou Zaicheng Sun 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第6期1028-1037,共10页
Ultrathin small MoS2nanosheets exhibit a higher electrocatalytic activity for the hydrogen evolution reaction.However,strong interactions between MoS2layers may result in aggregation;together with the low conductivity... Ultrathin small MoS2nanosheets exhibit a higher electrocatalytic activity for the hydrogen evolution reaction.However,strong interactions between MoS2layers may result in aggregation;together with the low conductivity of MoS2,this may lower its electrocatalytic activity.In this paper we present a method that we developed to directly produce solid S,N co‐doped carbon(SNC)with a graphite structure and multiple surface groups through a hydrothermal route.When Na2MoO4was added to the reaction,polymolybdate could be anchored into the carbon materials via a chemical interaction that helps polymolybdate disperse uniformly into the SNC.After a high temperature treatment,polymolybdate transformed into MoS2at800°C for6h in a N2atmosphere at a heating rate of5°C/min,owing to S2?being released from the SNC during the treatment(denoted as MoS2/SNC‐800‐6h).The SNC effectively prevents MoS2from aggregating into large particles,and we successfully prepared highly dispersed MoS2in the SNC matrix.Electrochemical characterizations indicate that MoS2/SNC‐900‐12h exhibits a low onset potential of115mV and a low overpotential of237mV at a current density of10mA/cm2.Furthermore,MoS2/SNC‐900‐12h also had an excellent stability with only^2.6%decay at a current density of10mA/cm2after5000test cycles. 展开更多
关键词 Mos2 nanosheet s N co‐doped carbon Electrocatalytic hydrogen production Composite Hydrogen evolution reaction
下载PDF
EFFECT OF THE EXISTING STATES OF CHROMIUM ION ON THE COLOR CHARACTERISTICS OF DOPED β-C_2S
10
作者 冯修吉 阎培玉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1990年第2期1-8,共8页
According to the theory of crystal field, the existing state of chromium ions in β-C_2S was studied with optical spectra and EPR. The energy levels of chromium ions were calculated. Chromium ions exist in form of Cr^... According to the theory of crystal field, the existing state of chromium ions in β-C_2S was studied with optical spectra and EPR. The energy levels of chromium ions were calculated. Chromium ions exist in form of Cr^(4+) and Cr^(5+) coordinated with distorted octahedra. The reason of fading of β-C_2S hydrate is that the strength of light absorption declines be- cause of the valence change of chromium ions and chroninm dissolves out and loses in water. 展开更多
关键词 Doped 6-C_2s Color characteristics Existing state Chromium ion
下载PDF
S/N-co-doped graphite nanosheets exfoliated via three-roll milling for high-performance sodium/potassium ion batteries 被引量:2
11
作者 Xin Wang Zhicong Luo +8 位作者 Juntong Huang Zhi Chen Tong Xiang Zhijun Feng Jing Wang Sinong Wang Yongcun Ma Huiyong Yang Xibao Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第16期47-55,共9页
Due to its larger ionic radius,further studies are needed before graphite can be used as an anode for sodium/potassium-ion batteries(SIBs/KIBs).It is believed that doping and increasing the layer spacing can improve t... Due to its larger ionic radius,further studies are needed before graphite can be used as an anode for sodium/potassium-ion batteries(SIBs/KIBs).It is believed that doping and increasing the layer spacing can improve the Na+/K+storage.Herein,S/N co-doped graphite nanosheets(GNS)with an enlarged interlayer spacing of 0.39 nm were prepared via exfoliation with three-roll milling(TRM)combined with thiourea heated at different temperatures.This method generates abundant defects and active sites for GNS,as well as facilitates rapid access and transport of electrolytes and electrons/ions.The electrochemical results show that the S/N-doped GNS exfoliated 15 times and heated at 600°C(SNGNS15-600)with thiourea as the electrode delivers a discharge capacity of 94 mAh g–1 over 6000 cycles at 10 A g–1 with an enhanced rate capability and stable performance for application in SIBs.Calculations using density functional theory show that the increased interlayer spacing by TRM and S,N co-doping enhances the adsorption energies of Na+on graphite,thus improving the Na+storage.As the anode for KIBs,the SNGNS15-600 electrode has a capacity of 142 mAh g–1 after 5000 cycles at 0.5 A g–1.This study provides an essential theoretical basis for the effective exfoliation of layered graphite-based materials and their applications in energy storage. 展开更多
关键词 Graphite nanosheets s/N doping Three-roll milling sodium-ion batteries Potassium-ion batteries
原文传递
Engineering defects and adjusting electronic structure on S doped MoO2 nanosheets toward highly active hydrogen evolution reaction 被引量:6
12
作者 Shuo Geng Yequn Liu +2 位作者 Yong Sheng Yu Weiwei Yang Haibo Li 《Nano Research》 SCIE EI CAS CSCD 2020年第1期121-126,共6页
The electrocatalytic hydrogen evolution reaction(HER)is one of the most promising ways for low-cost hydrogen production in the future.In this work,hetero S atoms were introduced into the MoO2 to enhance the catalytic ... The electrocatalytic hydrogen evolution reaction(HER)is one of the most promising ways for low-cost hydrogen production in the future.In this work,hetero S atoms were introduced into the MoO2 to enhance the catalytic activity by simultaneously adjusting electron structure,engineering lattice defect,and increasing oxygen vacancies.And the S doped MoO2 nanosheets with proper S doping amount show the enhanced performance for HER.The optimized catalyst shows a small onset overpotential as low as 120 mV,a low overpotential of 176 mV at the current density of 10 mA/cm^2 which is decreased 166 mV compared to that of the pristine MoO2 nanosheets,a low Tafel slope of 57 mV/decade,and a high turnover frequency of 0.13 H2/s per active site at 150 mV.This finding proposes an effective strategy to prepare nonprecious metal oxide catalyst for enhancing HER performance by rationally doping hetero atoms. 展开更多
关键词 s doping MoO2 DEFECT electron structure charge transfer
原文传递
Heterostructured Nitrogen and Sulfur co-Doped Black TiO2/g-C3N4 Photocatalyst with Enhanced Photocatalytic Activity 被引量:2
13
作者 MENG Zeshuol ZHOU Bo +3 位作者 XU Jian LI Yaxin HU Xiaoying TIAN Hongwei 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2020年第6期1045-1052,共8页
Conventional titanium dioxide(TiO2)photocatalyst could absorb only ultraviolet light due to its wide bandgap.In this paper,black TiO2 with narrow bandgap was prepared by introducing oxygen vacancies.Meanwhile.nitrogen... Conventional titanium dioxide(TiO2)photocatalyst could absorb only ultraviolet light due to its wide bandgap.In this paper,black TiO2 with narrow bandgap was prepared by introducing oxygen vacancies.Meanwhile.nitrogen(N)and sulfur(S)elements were doped to further broaden the visible light response range of TiOx(NS-BT),and then heterostructured N.S-doped black TiOz/g-C3Na(CN/NS-BT)was successfully constructed by easily accessible route.The formation of CN/NS-BT heteroiunction structure increased the generation and separation efficiency of photogenerated electron-hole pairs,as well as accelerated the transfer rate of the carriers.The as-prepared CN/NS-BT exhibited excellent photocatalytic performance towards the degradation of Rhodamine B(RhB)under visible light irradiation with satisfactory stability.The apparent reaction rate constant of CN/NS-BT(0.0079)was 15.8-fold higher than that of commercial P25(0.0005),The structure,morphology,chemical composition and optical properties of the as-prepared CN/NS-BT were characterized by various analytical methods,and possible photocatalytic enhancement mechanism was proposed.Overall,CN/NS-BT composites look promising as photocatalytic material for future environmental treatment. 展开更多
关键词 Black TiO2 g-C3N4 N s doping Heterostructure photocatalyst Visible light photodegradation
原文传递
LJItrasensitive H2S gas sensors based on p-type WS2 hybrid materials 被引量:3
14
作者 Georgies Alene Asrest Jose J. Baldovi +11 位作者 Aron Dombovari Topias Jarvinen Gabriela Simone Lorite Melinda Mohl Andrey Shchukarev Alejandro Perez Paz Lede Xian Jyri-Pekka Mikkola Anita Lloyd Spetz Heli Jantunen Angel Rubio Krisztian Kordas 《Nano Research》 SCIE EI CAS CSCD 2018年第8期4215-4224,共10页
Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor app... Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor applications. Herein, we explore the gas sensing behavior of WS2 nanowire-nanoflake hybrid materials and demonstrate their excellent sensitivity (0.043 ppm-1) as well as high selectivity towards H2S relative to CO, NH~, H2, and NO (with corresponding sensitivities of 0.002, 0.0074, 0.0002, and 0.0046 pprn-1, respectively). Gas response measurements, complemented with the results of X-ray photoelectron spectroscopy analysis and first-principles calculations based on density functional theory, suggest that the intrinsic electronic properties of pristine WS2 alone are not sufficient to explain the observed high sensitivity towards H2S. A major role in this behavior is also played by O doping in the S sites of the WS2 lattice. The results of the present study open up new avenues for the use of transition metal disulfide nanomaterials as effective alternatives to metal oxides in future applications for industrial process control, security, and health and environmental safety. 展开更多
关键词 ws nanowire nanoflake gas sensor H2s O doping
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部