Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficul...Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficulty in selecting parameters,and the low computational efficiency.Inspired by deep learning,we suggest a deep learning-based workflow for seismic time-frequency analysis.The sparse S transform network(SSTNet)is first built to map the relationship between synthetic traces and sparse S transform spectra,which can be easily pre-trained by using synthetic traces and training labels.Next,we introduce knowledge distillation(KD)based transfer learning to re-train SSTNet by using a field data set without training labels,which is named the sparse S transform network with knowledge distillation(KD-SSTNet).In this way,we can effectively calculate the sparse time-frequency spectra of field data and avoid the use of field training labels.To test the availability of the suggested KD-SSTNet,we apply it to field data to estimate seismic attenuation for reservoir characterization and make detailed comparisons with the traditional time-frequency analysis methods.展开更多
We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic...We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequencydependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.展开更多
The ground roll and body wave usually show significant differences in arrival time, frequency content, and polarization characteristics, and conventional polarization filters that operate in either the time or frequen...The ground roll and body wave usually show significant differences in arrival time, frequency content, and polarization characteristics, and conventional polarization filters that operate in either the time or frequency domain cannot consider all these elements. Therefore, we have developed a time-frequency dependent polarization filter based on the S transform to attenuate the ground roll in seismic records. Our approach adopts the complex coefficients of the S transform of the multi-component seismic data to estimate the local polarization attributes and utilizes the estimated attributes to construct the filter function. In this study, we select the S transform to design this polarization filter because its scalable window length can ensure the same number of cycles of a Fourier sinusoid, thereby rendering more precise estimation of local polarization attributes. The results of applying our approach in synthetic and real data examples demonstrate that the proposed polarization filter can effectively attenuate the ground roll and successfully preserve the body wave.展开更多
The S transform, which is a time-frequency representation known for its local spectral phase properties in signal processing, uniquely combines elements of wavelet transforms and the short-time Fourier transform (STF...The S transform, which is a time-frequency representation known for its local spectral phase properties in signal processing, uniquely combines elements of wavelet transforms and the short-time Fourier transform (STFT). The fractional Fourier transform is a tool for non-stationary signal analysis. In this paper, we define the concept of the fractional S transform (FRST) of a signal, based on the idea of the fractional Fourier transform (FRFT) and S transform (ST), extend the S transform to the time-fractional frequency domain from the time- frequency domain to obtain the inverse transform, and study the FRST mathematical properties. The FRST, which has the advantages of FRFT and ST, can enhance the ST flexibility to process signals. Compared to the S transform, the FRST can effectively improve the signal time- frequency resolution capacity. Simulation results show that the proposed method is effective.展开更多
The low-pass fi ltering eff ect of the Earth results in the absorption and attenuation of the high-frequency components of seismic signals by the stratum during propagation.Hence,seismic data have low resolution.Consi...The low-pass fi ltering eff ect of the Earth results in the absorption and attenuation of the high-frequency components of seismic signals by the stratum during propagation.Hence,seismic data have low resolution.Considering the limitations of traditional high-frequency compensation methods,this paper presents a new method based on adaptive generalized S transform.This method is based on the study of frequency spectrum attenuation law of seismic signals,and the Gauss window function of adaptive generalized S transform is used to fi t the attenuation trend of seismic signals to seek the optimal Gauss window function.The amplitude spectrum compensation function constructed using the optimal Gauss window function is used to modify the time-frequency spectrum of the adaptive generalized S transform of seismic signals and reconstruct seismic signals to compensate for high-frequency attenuation.Practical data processing results show that the method can compensate for the high-frequency components that are absorbed and attenuated by the stratum,thereby eff ectively improving the resolution and quality of seismic data.展开更多
This paper presents a novel robust S transform algorithm based on the clipping method to process signals corrupted by impulsive noise.The proposed algorithm is introduced to determine the clipping threshold value acco...This paper presents a novel robust S transform algorithm based on the clipping method to process signals corrupted by impulsive noise.The proposed algorithm is introduced to determine the clipping threshold value according to the characteristics of the signal samples.Signals in various impulsive noise models are considered to illustrate that the robust S transform can achieve better performance than the standard S transform.Moreover,mean square errors for instantaneous frequency estimation of the robust S transform are compared with that of the standard S transform,showing that the robust S transform can achieve significantly improved instantaneous frequency estimation for the signals in impulsive noise.展开更多
为实现电力系统次/超同步振荡的快速、准确辨识,提出了一种基于同步压缩广义S变换(synchrosqueezing generalized S transform, SSGST)和改进稀疏时域法(improved sparse time domain method,ISTD)结合的次/超同步振荡辨识方法。该方法...为实现电力系统次/超同步振荡的快速、准确辨识,提出了一种基于同步压缩广义S变换(synchrosqueezing generalized S transform, SSGST)和改进稀疏时域法(improved sparse time domain method,ISTD)结合的次/超同步振荡辨识方法。该方法首先利用能量比函数对电力系统广域量测信息实时检测,当检测到信号能量发生突变时,利用SSGST对检测到的振荡信号分解得到相应的SSGST时频系数矩阵;然后通过改进的脊线提取方法在时频域实现对各振荡分量的最优轨迹搜索;进一步,结合最优轨迹时频索引重构各振荡分量的时域分量,并利用ISTD辨识方法计算出各振荡分量的频率和阻尼比系数;最后,通过自合成模拟信号、双馈风电场经串补并网系统仿真信号和某实际风电场实测数据验证了所提方法的准确性和有效性。展开更多
基金supported by the National Natural Science Foundation of China (42274144,42304122,and 41974155)the Key Research and Development Program of Shaanxi (2023-YBGY-076)+1 种基金the National Key R&D Program of China (2020YFA0713404)the China Uranium Industry and East China University of Technology Joint Innovation Fund (NRE202107)。
文摘Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficulty in selecting parameters,and the low computational efficiency.Inspired by deep learning,we suggest a deep learning-based workflow for seismic time-frequency analysis.The sparse S transform network(SSTNet)is first built to map the relationship between synthetic traces and sparse S transform spectra,which can be easily pre-trained by using synthetic traces and training labels.Next,we introduce knowledge distillation(KD)based transfer learning to re-train SSTNet by using a field data set without training labels,which is named the sparse S transform network with knowledge distillation(KD-SSTNet).In this way,we can effectively calculate the sparse time-frequency spectra of field data and avoid the use of field training labels.To test the availability of the suggested KD-SSTNet,we apply it to field data to estimate seismic attenuation for reservoir characterization and make detailed comparisons with the traditional time-frequency analysis methods.
基金supported by the National Natural Science Foundation of China(No.41204091)New Teachers’ Fund for Doctor Stations,the Ministry of Education(No.20105122120001)Science and Technology Support Program from Science and Technology Department of Sichuan Province(No.2011GZ0244)
文摘We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequencydependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.
基金supported by the National Science and Technology Major Project of China(Grant No.2011ZX05014 and 2011ZX05008-005)
文摘The ground roll and body wave usually show significant differences in arrival time, frequency content, and polarization characteristics, and conventional polarization filters that operate in either the time or frequency domain cannot consider all these elements. Therefore, we have developed a time-frequency dependent polarization filter based on the S transform to attenuate the ground roll in seismic records. Our approach adopts the complex coefficients of the S transform of the multi-component seismic data to estimate the local polarization attributes and utilizes the estimated attributes to construct the filter function. In this study, we select the S transform to design this polarization filter because its scalable window length can ensure the same number of cycles of a Fourier sinusoid, thereby rendering more precise estimation of local polarization attributes. The results of applying our approach in synthetic and real data examples demonstrate that the proposed polarization filter can effectively attenuate the ground roll and successfully preserve the body wave.
基金supported by Scientific Research Fund of Sichuan Provincial Education Departmentthe National Nature Science Foundation of China (No. 40873035)
文摘The S transform, which is a time-frequency representation known for its local spectral phase properties in signal processing, uniquely combines elements of wavelet transforms and the short-time Fourier transform (STFT). The fractional Fourier transform is a tool for non-stationary signal analysis. In this paper, we define the concept of the fractional S transform (FRST) of a signal, based on the idea of the fractional Fourier transform (FRFT) and S transform (ST), extend the S transform to the time-fractional frequency domain from the time- frequency domain to obtain the inverse transform, and study the FRST mathematical properties. The FRST, which has the advantages of FRFT and ST, can enhance the ST flexibility to process signals. Compared to the S transform, the FRST can effectively improve the signal time- frequency resolution capacity. Simulation results show that the proposed method is effective.
基金This research is supported by the National Science and Technology Major Project of China(No.2011ZX05024-001-03)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JQ-588)Innovation Fund for graduate students of Xi’an Shiyou University(No.YCS17111017).
文摘The low-pass fi ltering eff ect of the Earth results in the absorption and attenuation of the high-frequency components of seismic signals by the stratum during propagation.Hence,seismic data have low resolution.Considering the limitations of traditional high-frequency compensation methods,this paper presents a new method based on adaptive generalized S transform.This method is based on the study of frequency spectrum attenuation law of seismic signals,and the Gauss window function of adaptive generalized S transform is used to fi t the attenuation trend of seismic signals to seek the optimal Gauss window function.The amplitude spectrum compensation function constructed using the optimal Gauss window function is used to modify the time-frequency spectrum of the adaptive generalized S transform of seismic signals and reconstruct seismic signals to compensate for high-frequency attenuation.Practical data processing results show that the method can compensate for the high-frequency components that are absorbed and attenuated by the stratum,thereby eff ectively improving the resolution and quality of seismic data.
基金supported by the National Natural Science Foundation of China(6110216461272224)the Scientific Research Fund of Hangzhou Normal University(2011QDL021)
文摘This paper presents a novel robust S transform algorithm based on the clipping method to process signals corrupted by impulsive noise.The proposed algorithm is introduced to determine the clipping threshold value according to the characteristics of the signal samples.Signals in various impulsive noise models are considered to illustrate that the robust S transform can achieve better performance than the standard S transform.Moreover,mean square errors for instantaneous frequency estimation of the robust S transform are compared with that of the standard S transform,showing that the robust S transform can achieve significantly improved instantaneous frequency estimation for the signals in impulsive noise.
文摘依据FFT→优化窗→IFFT思路,突破线性时频变换的窗函数积分性能桎梏,实现高性能优化窗函数的线性时频变换应用,建立新型时频变换算法——K-S变换.对信号x(t)的FFT频谱向量进行频移处理后,与该频移点下Kaiser优化窗的频谱向量进行Hadamard乘积,再将乘积结果进行FFT逆变换(IFFT),构造出K-S变换复时频矩阵,由此获得x(t)的时间-频率-幅值、时间-频率-相位三维信息;给出逆变换的数学推导与局部性质、线性性质和变分辨率特性;0~150 kHz电网的稳态与时变超谐波信号仿真实验表明,K-S变换的时域、频域分辨能力均优于流行的短时傅里叶变换、S变换,具有优良的变分辨率性能;0~40 kHz超谐波信号的实测证明,基于K-S变换的超谐波电压幅值测量绝对误差均小于0.032 3 V.
文摘为实现电力系统次/超同步振荡的快速、准确辨识,提出了一种基于同步压缩广义S变换(synchrosqueezing generalized S transform, SSGST)和改进稀疏时域法(improved sparse time domain method,ISTD)结合的次/超同步振荡辨识方法。该方法首先利用能量比函数对电力系统广域量测信息实时检测,当检测到信号能量发生突变时,利用SSGST对检测到的振荡信号分解得到相应的SSGST时频系数矩阵;然后通过改进的脊线提取方法在时频域实现对各振荡分量的最优轨迹搜索;进一步,结合最优轨迹时频索引重构各振荡分量的时域分量,并利用ISTD辨识方法计算出各振荡分量的频率和阻尼比系数;最后,通过自合成模拟信号、双馈风电场经串补并网系统仿真信号和某实际风电场实测数据验证了所提方法的准确性和有效性。