Combination of CO_(2) capture using inorganic alkali with subsequently electrochemical conversion of the resultant HCO_(3)^(-)to high-value chemicals is a promising route of low cost and high efficiency.The electroche...Combination of CO_(2) capture using inorganic alkali with subsequently electrochemical conversion of the resultant HCO_(3)^(-)to high-value chemicals is a promising route of low cost and high efficiency.The electrochemical reduction of HCO_(3)^(-)is challenging due to the inaccessible of negatively charged molecular groups to the electrode surface.Herein,we adopt a comprehensive strategy to tackle this challenge,i.e.,cascade of in situ chemical conversion of HCO_(3)^(-)to CO_(2) and CO_(2) electrochemical reduction in a flow cell.With a tailored Ni-N-S single atom catalyst(SACs),where sulfur(S)atoms located in the second shell of Ni center,the CO_(2)electroreduction(CO_(2)ER)to CO is boosted.The experimental results and density functional theory(DFT)calculations reveal that the introduction of S increases the p electron density of N atoms near Ni atom,thereby stabilizing^(*)H over N and boosting the first proton coupled electron transfer process of CO_(2)ER,i.e.,^(*)+e^(-)+^(*)H+^(*)CO_(2)→^(*)COOH.As a result,the obtained catalyst exhibits a high faradaic efficiency(FE_(CO)~98%)and a low overpotential of 425 mV for CO production as well as a superior turnover frequency(TOF)of 47397 h^(-1),outcompeting most of the reported Ni SACs.More importantly,an extremely high FECOof 90%is achieved at 50 mA cm^(-2)in the designed membrane electrode assembly(MEA)cascade electrolyzer fed with liquid bicarbonate.This work not only highlights the significant role of the second coordination on the first coordination shell of the central metal for CO_(2)ER,but also provides an alternative and feasible strategy to realize the electrochemical conversion of HCO_(3)^(-)to high-value chemicals.展开更多
The dynamic dipole polarizabilities for 1S, 2S and 3S states of the hydrogen atom are calculated using the finite B-spline basis set method, and the magic wavelengths for 1S-2S and 1S-3S transitions are identified. In...The dynamic dipole polarizabilities for 1S, 2S and 3S states of the hydrogen atom are calculated using the finite B-spline basis set method, and the magic wavelengths for 1S-2S and 1S-3S transitions are identified. In comparison of the solutions from the Schr6dinger and Dirac equations, the relativistic corrections on the magic wavelengths are of the order of 10-2 nm. The laser intensities for a 300-Er-deep optical trap and the heating rates at 514 and 1371 nm are estimated. The reliable prediction of the magic wavelengths would be helpful for the experimental design on the optical trapping of the hydrogen atoms, and in turn, it would be helpful to improve the accuracy of the measurements of the hydrogen 1S-2S and 1S-3S transitions.展开更多
By using the path integral approach, we investigate the problem of Hooke's atom (two electrons interacting with Coulomb potential in an external harmonic-oscillator potential) in an arbitrary time-dependent electri...By using the path integral approach, we investigate the problem of Hooke's atom (two electrons interacting with Coulomb potential in an external harmonic-oscillator potential) in an arbitrary time-dependent electric field. For a certain infinite set of discrete oscillator frequencies, we obtain the analytical solutions. The ground state polarization of the atom is then calculated. The same result is also obtained through linear response theory.展开更多
The present study supports the provocative idea that the nucleus directs the atom’s electronic structure. With the progress of the atomic number the Atomic Molar Volume evolution of the chemical elements obeys the a...The present study supports the provocative idea that the nucleus directs the atom’s electronic structure. With the progress of the atomic number the Atomic Molar Volume evolution of the chemical elements obeys the atom’s electronic structure rules, fitting at the same time the concomitant specular evolution of the Neutron Excess addition to the nuclei. Details such as the Atomic Molar Volume contraction of the d blocks transition metals or of the Eu and Yb atomic volume anomaly of the lanthanoid metals respond to the nuclear in addition to the atom’s electronic structure. Atom’s nuclei are synthetized in the star interior and capture the electrons only after migration to the star’s periphery, to become stable atoms: nuclei are prior to atoms. Nuclear structure elements, like the 50 and 82 neutron and proton magic numbers, are geared to the noble gases, the central elements of the electronic structure.展开更多
A new method for the identification of the chemical Elements isotopes takes advantage of the isotope Neutron Excess (NE) number. The repre-sentation of the natural isotopes in the Z-NE plane reveals a surprising corre...A new method for the identification of the chemical Elements isotopes takes advantage of the isotope Neutron Excess (NE) number. The repre-sentation of the natural isotopes in the Z-NE plane reveals a surprising correspondence between atom’s nuclear and electronic structures. Nuclear directs the atom electronic structure in spite of the alternative set of numbers ruling the two main atom’s compartments. These compartments appear better integrated than actually considered. The Mendeleev periodic table is rooted in the atom’s nuclear structure. Two recent studies arrive to identical conclusions.展开更多
A modified uncertainty principle coupling the intervals of energy and time can lead to the shortest distance attained in course of the excitation process, as well as the shortest possible time interval for that proces...A modified uncertainty principle coupling the intervals of energy and time can lead to the shortest distance attained in course of the excitation process, as well as the shortest possible time interval for that process. These lower bounds are much similar to the interval limits deduced on both the experimental and theoretical footing in the era when the Heisenberg uncertainty principle has been developed. In effect of the bounds existence, a maximal nuclear charge Ze acceptable for the Bohr atomic ion could be calculated. In the next step the velocity of electron transitions between the Bohr orbits is found to be close to the speed of light. This result provides us with the energy spectrum of transitions similar to that obtained in the Bohr’s model. A momentary force acting on the electrons in course of their transitions is estimated to be by many orders larger than a steady electrostatic force existent between the atomic electron and the nucleus.展开更多
Thermal conductivity of material is one of the basic physical properties and plays an important role in manipu-lating thermal energy.In order to accelerate the prediction of material structure with desired thermal pro...Thermal conductivity of material is one of the basic physical properties and plays an important role in manipu-lating thermal energy.In order to accelerate the prediction of material structure with desired thermal property,machine learning algorithm has been widely adopted.However,in the optimization of multivariable material structure such as different lengths or proportions,the machine learning algorithm may be required to be recon-ducted again and again for each variable,which will consume a lot of computing resources.Recently,it has been found that the thermal conductivity of aperiodic superlattices is closely related to the degree of the structural ran-domness,which can also be reflected in their local pattern structures.Inspired by these,we propose a new pattern analysis method,in which machine learning only needs to be carried out for one time,and through which the optimal structure of different variables with low thermal conductivity can be obtained.To verify the method,we compare the thermal conductivities of the structure obtained by pattern analysis,conventional machine learning,and previous literature,respectively.The pattern analysis method is validated to greatly reduce the prediction time of multivariable structure with high enough accuracy and may promote further development of material informatics.展开更多
基金financially supported by the Natural Science Foundation of Shandong Province (ZR2020QB132,ZR2020MB025)the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (SKL202108SIC)the Taishan Scholar Program of Shandong Province (ts201712046)。
文摘Combination of CO_(2) capture using inorganic alkali with subsequently electrochemical conversion of the resultant HCO_(3)^(-)to high-value chemicals is a promising route of low cost and high efficiency.The electrochemical reduction of HCO_(3)^(-)is challenging due to the inaccessible of negatively charged molecular groups to the electrode surface.Herein,we adopt a comprehensive strategy to tackle this challenge,i.e.,cascade of in situ chemical conversion of HCO_(3)^(-)to CO_(2) and CO_(2) electrochemical reduction in a flow cell.With a tailored Ni-N-S single atom catalyst(SACs),where sulfur(S)atoms located in the second shell of Ni center,the CO_(2)electroreduction(CO_(2)ER)to CO is boosted.The experimental results and density functional theory(DFT)calculations reveal that the introduction of S increases the p electron density of N atoms near Ni atom,thereby stabilizing^(*)H over N and boosting the first proton coupled electron transfer process of CO_(2)ER,i.e.,^(*)+e^(-)+^(*)H+^(*)CO_(2)→^(*)COOH.As a result,the obtained catalyst exhibits a high faradaic efficiency(FE_(CO)~98%)and a low overpotential of 425 mV for CO production as well as a superior turnover frequency(TOF)of 47397 h^(-1),outcompeting most of the reported Ni SACs.More importantly,an extremely high FECOof 90%is achieved at 50 mA cm^(-2)in the designed membrane electrode assembly(MEA)cascade electrolyzer fed with liquid bicarbonate.This work not only highlights the significant role of the second coordination on the first coordination shell of the central metal for CO_(2)ER,but also provides an alternative and feasible strategy to realize the electrochemical conversion of HCO_(3)^(-)to high-value chemicals.
基金Supported by the National Basic Research Program of China under Grant No 2012CB821305the National Natural Science Foundation of China under Grant No 91536102
文摘The dynamic dipole polarizabilities for 1S, 2S and 3S states of the hydrogen atom are calculated using the finite B-spline basis set method, and the magic wavelengths for 1S-2S and 1S-3S transitions are identified. In comparison of the solutions from the Schr6dinger and Dirac equations, the relativistic corrections on the magic wavelengths are of the order of 10-2 nm. The laser intensities for a 300-Er-deep optical trap and the heating rates at 514 and 1371 nm are estimated. The reliable prediction of the magic wavelengths would be helpful for the experimental design on the optical trapping of the hydrogen atoms, and in turn, it would be helpful to improve the accuracy of the measurements of the hydrogen 1S-2S and 1S-3S transitions.
文摘The paper is given the interpolation of operators between weighted Hardy spaces and weighted L p spaces when w∈A 1 by Calderon Zygmund decomposition.
基金Supported by the National Natural Science Foundation of China under Grant No.10805029ZheJiang NSF under Grant No.R6090717the K.C.Wong Magna Foundation of Ningbo University
文摘By using the path integral approach, we investigate the problem of Hooke's atom (two electrons interacting with Coulomb potential in an external harmonic-oscillator potential) in an arbitrary time-dependent electric field. For a certain infinite set of discrete oscillator frequencies, we obtain the analytical solutions. The ground state polarization of the atom is then calculated. The same result is also obtained through linear response theory.
文摘The present study supports the provocative idea that the nucleus directs the atom’s electronic structure. With the progress of the atomic number the Atomic Molar Volume evolution of the chemical elements obeys the atom’s electronic structure rules, fitting at the same time the concomitant specular evolution of the Neutron Excess addition to the nuclei. Details such as the Atomic Molar Volume contraction of the d blocks transition metals or of the Eu and Yb atomic volume anomaly of the lanthanoid metals respond to the nuclear in addition to the atom’s electronic structure. Atom’s nuclei are synthetized in the star interior and capture the electrons only after migration to the star’s periphery, to become stable atoms: nuclei are prior to atoms. Nuclear structure elements, like the 50 and 82 neutron and proton magic numbers, are geared to the noble gases, the central elements of the electronic structure.
文摘A new method for the identification of the chemical Elements isotopes takes advantage of the isotope Neutron Excess (NE) number. The repre-sentation of the natural isotopes in the Z-NE plane reveals a surprising correspondence between atom’s nuclear and electronic structures. Nuclear directs the atom electronic structure in spite of the alternative set of numbers ruling the two main atom’s compartments. These compartments appear better integrated than actually considered. The Mendeleev periodic table is rooted in the atom’s nuclear structure. Two recent studies arrive to identical conclusions.
文摘A modified uncertainty principle coupling the intervals of energy and time can lead to the shortest distance attained in course of the excitation process, as well as the shortest possible time interval for that process. These lower bounds are much similar to the interval limits deduced on both the experimental and theoretical footing in the era when the Heisenberg uncertainty principle has been developed. In effect of the bounds existence, a maximal nuclear charge Ze acceptable for the Bohr atomic ion could be calculated. In the next step the velocity of electron transitions between the Bohr orbits is found to be close to the speed of light. This result provides us with the energy spectrum of transitions similar to that obtained in the Bohr’s model. A momentary force acting on the electrons in course of their transitions is estimated to be by many orders larger than a steady electrostatic force existent between the atomic electron and the nucleus.
基金This work was supported by National Natural Science Foundation of China(52076087)the Ministry of Science and Technology of the People’s Republic of China(2017YFE0100600)Wuhan City Science and Technology Program(2020010601012197).
文摘Thermal conductivity of material is one of the basic physical properties and plays an important role in manipu-lating thermal energy.In order to accelerate the prediction of material structure with desired thermal property,machine learning algorithm has been widely adopted.However,in the optimization of multivariable material structure such as different lengths or proportions,the machine learning algorithm may be required to be recon-ducted again and again for each variable,which will consume a lot of computing resources.Recently,it has been found that the thermal conductivity of aperiodic superlattices is closely related to the degree of the structural ran-domness,which can also be reflected in their local pattern structures.Inspired by these,we propose a new pattern analysis method,in which machine learning only needs to be carried out for one time,and through which the optimal structure of different variables with low thermal conductivity can be obtained.To verify the method,we compare the thermal conductivities of the structure obtained by pattern analysis,conventional machine learning,and previous literature,respectively.The pattern analysis method is validated to greatly reduce the prediction time of multivariable structure with high enough accuracy and may promote further development of material informatics.