期刊文献+
共找到4,462篇文章
< 1 2 224 >
每页显示 20 50 100
Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation
1
作者 Haixu Li Haobo He +7 位作者 Tiannan Jiang Yunfei Du Zhichen Wu Liang Xu Xinjie Wang Xiaoguang Liu Wanhua Yu Wendong Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期169-181,共13页
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB... S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB. 展开更多
关键词 advanced oxidation process alcohol solvent evaporation hydrogen bond s and Co co-doped carbon catalysts wastewater remediation
下载PDF
Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery 被引量:5
2
作者 Hao Fan Yu Wang +8 位作者 Fujie Gao Longqi Yang Meng Liu Xiao Du Peng Wang Lijun Yang Qiang Wu Xizhang Wang Zheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期64-71,共8页
Exploring inexpensive and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) is critical for rechargeable metal-air batteries. Herein, we report a new 3D hier... Exploring inexpensive and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) is critical for rechargeable metal-air batteries. Herein, we report a new 3D hierarchical sulfur and nitrogen co-doped carbon nanocages(hSNCNC) as a promising bifunctional oxygen electrocatalyst by an in-situ MgO template method with pyridine and thiophene as the mixed precursor. The as-prepared h SNCNC exhibits a positive half-wave potential of 0.792 V(vs. reversible hydrogen electrode, RHE) for ORR, and a low operating potential of 1.640 V at a 10 mA cm-2 current density for OER. The reversible oxygen electrode index is 0.847 V, far superior to commercial Pt/C and IrO2,which reaches the top level of the reported bifunctional catalysts. Consequently, the hSNCNC as air cathodes in an assembled Zn-air battery features low charge/discharge overpotential and long lifetime. The remarkable properties arises from the introduced multiple heteroatom dopants and stable 3D hierarchical structure with multi-scale pores, which provides the abundant uniform high-active S and N species and efficient charge transfer as well as mass transportation. These results demonstrate the potential strategy in developing suitable carbon-based bi-/multi-functional catalysts to enable the next generation of the rechargeable metal-air batteries. 展开更多
关键词 3D HIERARCHICAL CARBOn nAnOCAGEs s n co-dopInG BIFUnCTIOnAL electrocatalysis Zn-air battery
下载PDF
Inherent mass transfer engineering of a Co,N co-doped carbon material towards oxygen reduction reaction 被引量:1
3
作者 Yanzhi Wang Bin Wang +6 位作者 Haitao Yuan Zuozhong Liang Zhehao Huang Yuye Zhou Wei Zhang Haoquan Zheng Rui Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期391-396,共6页
Oxygen reduction reaction (ORR) is an important process for the conversion and utilization of a wide range of renewable energy sources, and is critical for the shape of future energy scenario [1–10]. However, ORR is ... Oxygen reduction reaction (ORR) is an important process for the conversion and utilization of a wide range of renewable energy sources, and is critical for the shape of future energy scenario [1–10]. However, ORR is a complex four-electron transfer process and is kinetically sluggish. It is urgent to develop high-efficient electrocatalysts to solve this problem [11–15]. Up to now, precious metal-based catalysts such as Pt-based electrocatalysts have been widely studied and found to be one of the most efficient electrocatalysts for ORR. However, the high price and the small reserves limit their large-scale commercialization [10,16–23]. Therefore, in order to fulfill needs for the practical applications, it is necessary to develop low-cost electrocatalysts, also with high activity and great stability [19,24–28]. 展开更多
关键词 Co n co-doped porous carbon ELECTROCATALYsIs Oxygen reduction reaction Zn-air battery
下载PDF
Highly dispersed few-layer MoS_2 nanosheets on S, N co-doped carbon for electrocatalytic H_2 production 被引量:2
4
作者 Shixin Hua Dan Qu +5 位作者 Li An Guangcheng Xi Ge Chen Fan Li Zhijun Zhou Zaicheng Sun 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第6期1028-1037,共10页
Ultrathin small MoS2nanosheets exhibit a higher electrocatalytic activity for the hydrogen evolution reaction.However,strong interactions between MoS2layers may result in aggregation;together with the low conductivity... Ultrathin small MoS2nanosheets exhibit a higher electrocatalytic activity for the hydrogen evolution reaction.However,strong interactions between MoS2layers may result in aggregation;together with the low conductivity of MoS2,this may lower its electrocatalytic activity.In this paper we present a method that we developed to directly produce solid S,N co‐doped carbon(SNC)with a graphite structure and multiple surface groups through a hydrothermal route.When Na2MoO4was added to the reaction,polymolybdate could be anchored into the carbon materials via a chemical interaction that helps polymolybdate disperse uniformly into the SNC.After a high temperature treatment,polymolybdate transformed into MoS2at800°C for6h in a N2atmosphere at a heating rate of5°C/min,owing to S2?being released from the SNC during the treatment(denoted as MoS2/SNC‐800‐6h).The SNC effectively prevents MoS2from aggregating into large particles,and we successfully prepared highly dispersed MoS2in the SNC matrix.Electrochemical characterizations indicate that MoS2/SNC‐900‐12h exhibits a low onset potential of115mV and a low overpotential of237mV at a current density of10mA/cm2.Furthermore,MoS2/SNC‐900‐12h also had an excellent stability with only^2.6%decay at a current density of10mA/cm2after5000test cycles. 展开更多
关键词 Mos2 nanosheet s n co‐doped carbon Electrocatalytic hydrogen production Composite Hydrogen evolution reaction
下载PDF
Vacancy defect MoSeTe embedded in N and F co-doped carbon skeleton for high performance sodium ion batteries and hybrid capacitors
5
作者 Dehui Yang Wentao Guo +6 位作者 Fei Guo Jiaming Zhu Gang Wang Hui Wang Guanghui Yuan Shenghua Ma Beibei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期652-664,I0014,共14页
Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.Howev... Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices. 展开更多
关键词 MoseTe n F co-doped honeycomb carbon skeleton sodium-ion batteries sodium-ion hybrid capacitor
下载PDF
The Collaboratory for the Study of Earthquake Predictability in China:Experiment Design and Preliminary Results of CSEP2.0
6
作者 ZHANG Shengfeng ZHANG Yongxian +3 位作者 Maximilian J.WERNER Kenny G.RAHAM David A.RHOADES JoséA.BAYONA 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期94-97,共4页
Since the inaugural international collaboration under the framework of the Collaboratory for the Study of Earthquake Predictability(CSEP)in 2007,numerous forecast models have been developed and operated for earthquake... Since the inaugural international collaboration under the framework of the Collaboratory for the Study of Earthquake Predictability(CSEP)in 2007,numerous forecast models have been developed and operated for earthquake forecasting experiments across CSEP testing centers(Schorlemmer et al.,2018).Over more than a decade,efforts to compare forecasts with observed earthquakes using numerous statistical test methods and insights into earthquake predictability,which have become a highlight of the CSEP platform. 展开更多
关键词 earthquake forecasting seismicity modeling CsEP2.0 Pattern Informatics(PI)algorithm long-to-intermediate-term forecast Relative Intensity(RI)algorithm Completeness Magnitude s test n test
下载PDF
Preparation, Characterization, Photocatalytic Activity of S and Ag co-Doped Mesoporous Titania Photocatalysts
7
作者 姚淑华 郑志慧 +1 位作者 陈爽 石中亮 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第6期732-738,I0004,共8页
In order to improve the photocatalytic performance of mesoporous titania under visible light, a series of photocatalysts of S and Ag co-doped mesoporous titania have been successfully prepared by template method using... In order to improve the photocatalytic performance of mesoporous titania under visible light, a series of photocatalysts of S and Ag co-doped mesoporous titania have been successfully prepared by template method using thiourea, AgNO3 and tetrabutyl titanate as precursors and Pluronic P123 (EO20PO70EO20) as template. Scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption-desorption measurements, and UV-visible spectroscopy (UV-Vis) were employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The microcrystal of the photocatalysts consisted of anatase phase and was approximately present in the form of spherical particle. The photocatalytic performance was studied by photodegradation methyl orange (MO) in water under UV and visible light irradiation. The calcination temperature and the doping content influenced the photoactivity. In addition, the possibility of cyclic usage of co-doped mesoporous titania was also confirmed, the photocatalytic activity of mesoporous titania remained above 89% of that of the fresh sample after being used four times. It was shown that the co-doped mesoporous titania could be activated by visible light and could thus be potentially applied for the treatment of water contaminated by organic pollutants. The synergistic effect of sulfur and silver co-doping played an important role in improving the photocatalytic activity. 展开更多
关键词 Mesoporous titania s and Ag co-doping Doped catalyst Photocatalytic activity Template method Dye decomposition
下载PDF
Ultralong nitrogen/sulfur Co-doped carbon nano-hollowsphere chains with encapsulated cobalt nanoparticles for highly efficient oxygen electrocatalysis 被引量:6
8
作者 Wei Zhang Xingmei Guo +6 位作者 Cong Li Jiang-Yan Xue Wan-Ying Xu Zheng Niu Hongwei Gu Carl Redshaw Jian-Ping Lang 《Carbon Energy》 SCIE CSCD 2023年第8期15-30,共16页
The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution rea... The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is currently an urgent issue.Herein,an efficient bifunctional electrocatalyst featured by ultralong N,S-doped carbon nano-hollow-sphere chains about 1300 nm with encapsulated Co nanoparticles(Co-CNHSCs)is developed.The multifunctional catalytic properties of Co together with the heteroatom-induced charge redistribution(i.e.,modulating the electronic structure of the active site)result in superior catalytic activities toward OER and ORR in alkaline media.The optimized catalyst Co-CNHSC-3 displays an outstanding electrocatalytic ability for ORR and OER,a high specific capacity of 1023.6 mAh gZn^(-1),and excellent reversibility after 80 h at 10mA cm^(-2)in a Zn-air battery system.This work presents a new strategy for the design and synthesis of efficient multifunctional carbon-based catalysts for energy storage and conversion devices. 展开更多
关键词 Co nanoparticles n s co-doping oxygen electrocatalysts rechargeable Zn-air batteries ultralong carbon nano-hollow-sphere chains
下载PDF
Structure, photocatalytic and antibacterial activity study of Meso porous Ni and S co-doped TiO2 nano material under visible light irradiation 被引量:3
9
作者 K.V.Divya Lakshmi T.Siva Rao +2 位作者 J.Swathi Padmaja I.Manga Raju M.Ravi Kumar 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第7期1630-1641,共12页
Undoped and Ni–S co-doped mesoporous TiO2 nano materials were synthesized by using sol–gel method.The characteristic features of as prepared catalyst samples were investigated using various advanced spectroscopic an... Undoped and Ni–S co-doped mesoporous TiO2 nano materials were synthesized by using sol–gel method.The characteristic features of as prepared catalyst samples were investigated using various advanced spectroscopic and analytical techniques.The characterization results of the samples revealed that all the samples exhibited anatase phase(XRD),decreasing band gap(2.68 eV)(UV–Vis-DRS),small particle size(9.2 nm)(TEM),high surface area(142.156 m^2·g^-1)(BET),particles with spherical shape and smooth morphology(SEM);there is a frequency shift observed for co-doped sample(FT-IR)and the elemental composition electronic states and position of the doped elements(Ni and S)in the TiO2 lattice analyzed by XPS and EDX.These results supported the photocatalytic degradation of Bismarck Brown Red(BBR)achieved with in 110 min and also exhibited the antibacterial activity on Staphylococcus aureus(MTCC-3160),Pseudomonas fluorescence(MTCC-1688)under visible light irradiation. 展开更多
关键词 sol–gel ni–s co-doped TIO2 Photocatalysis under visible light Degradation of Bismarck BROWn Red Antibacterial activity
下载PDF
Rationally designed hollow carbon nanospheres decorated with S,P co-doped NiSe_(2) nanoparticles for high-performance potassium-ion and lithium-ion batteries 被引量:3
10
作者 Jiajia Ye Zizhong Chen +4 位作者 Zhiqiang Zheng Zhanghua Fu Guanghao Gong Guang Xia Cheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期401-411,I0011,共12页
Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in seconda... Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in secondary batteries.In this work,hollow carbon(HC) nanospheres embedded with S,P co-doped NiSe_(2)nanoparticles are fabricated by "drop and dry" and "dissolving and precipitation" processes to form Ni(OH)2nanocrystals followed by annealing with S and P dopants to form nanoparticles.The resultant S,P-NiSe_(2)/HC composite exhibits excellent cyclic performance with 131.6 mA h g^(-1)at1000 mA g^(-1)after 3000 cycles for K^(+)storage and a capacity of 417.1 mA h g^(-1)at 1000 mA g^(-1)after1000 cycles for Li^(+)storage.K-ion full cells are assembled and deliver superior cycling stability with a ca pacity of 72.5 mA h g^(-1)at 200 mA g^(-1)after 500 cycles.The hollow carbon shell with excellent electrical conductivity effectively promotes the transporta tion and tolerates large volume variation for both K^(+)and Li^(+).Density functional theory calculations confirm that the S and P co-doping NiSe_(2) enables stronger adsorption of K^(+)ions and higher electrical conductivity that contributes to the improved electrochemical performance. 展开更多
关键词 s P co-doping nise_(2)nanoparticles Hollow carbon nanospheres Potassium-ion batteries Lithium-ion batteries
下载PDF
Biomass-Derived Nitrogen and Sulfur Co-Doped 3D Carbon Networks with Interconnected Meso-Microporous Structure for High-Performance Supercapacitors 被引量:1
11
作者 Zhu Jiajia Hao Xiaodong +3 位作者 Wang Jie Guo Hongshuai Dou Hui Zhang Xiaogang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第4期590-602,共13页
Three-dimensional(3D)carbon networks have been explored as promising capacitive materials thanks to their unique structural features such as large ion-accessible surface area and interconnected porous networks,thus en... Three-dimensional(3D)carbon networks have been explored as promising capacitive materials thanks to their unique structural features such as large ion-accessible surface area and interconnected porous networks,thus enhancing both ions and electrons transport.Here,sustainable bacterial cellulose(BC)is used both precursor and template for facile synthesis of free-standing N,S-codoped 3Dcarbon networks(a-NSC)by the pyrolysis and activation of polyrhodanine coated BC.The synthesized a-NSC shows highly conductive interconnected porous networks(24S·cm^(-1)),large surface area(1 420m^2·g^(-1))with hierarchical meso-microporosity,and high-level heteroatoms codoping(N:3.1%in atom,S:3.2%in atom).Benefitting from these,a-NSC as binder-free electrode exhibits an ultrahigh specific capacitance of 340F·g^(-1)(24μF·cm^(-2))at the current density of 0.5A·g^(-1)in 6MKOH electrolyte,high-rate capability(71%at 20A·g^(-1))and excellent cycle stability.Furthermore,the assembled symmetrical supercapacitor displays a much short time constant of 0.35sin 1MTEABF4/AN electrolyte,obtaining a maximum energy density of 32.1W·h·kg^(-1 )at power density of 637W·kg^(-1).The in situ multi-heteroatoms doping enables biocellulose-derived carbon networks to exploit its full potentials in energy storage applications,which can be extended to other dimensional carbon nanostructures. 展开更多
关键词 bacterial cellulose 3D carbon networks FREE-sTAnDInG n s-codoping sUPERCAPACITORs
下载PDF
Cubic S/N co-doped TiO_(2) with rich oxygen vacancies from Ti-MOFs for efficient elimination of formaldehyde
12
作者 Qing Gao Lei Sun +1 位作者 Zhihua Wang Jiguang Deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第2期512-515,共4页
The cubic S/N co-doped TiO_(2)(TNSx,x is the calcination temperature)photocatalysts with rich oxygen vacancies were obtained by high temperature calcination of sulfur powder and titanium-based MOFs NH_(2)-MIL-125 for ... The cubic S/N co-doped TiO_(2)(TNSx,x is the calcination temperature)photocatalysts with rich oxygen vacancies were obtained by high temperature calcination of sulfur powder and titanium-based MOFs NH_(2)-MIL-125 for the photocatalytic removal of gaseous formaldehyde(a volatile organic compound).Among the obtained catalysts,the presence of oxygen vacancies restricted photogenerated electron and holes recombination.98.00%removal of gaseous formaldehyde in 150 min could be achieved over TNS600 by xenon lamp.The removal efficiency for formaldehyde was well retained for five cycle experiment.The results from PL,TRPL and EIS revealed that TNS600 had the best separation efficiency of photogenerated electrons and holes,and the enhanced charge separation led to a significant increase in photocatalytic activity.The photocatalytic oxidation mechanism indicated that the ^(•)OH and ^(•)O_(2)−radicals were mainly involved in the efficient elimination of gaseous formaldehyde and were able to mineralize formaldehyde to H_(2)O and CO_(2). 展开更多
关键词 Metal-organic frameworks PHOTOCATALYsIs Formaldehyde removal s/n co-doped TiO_(2) Oxygen vacancies
原文传递
Electronic Structure Magnetic Properties and Optical Properties of Co-doped AIN from First Principles 被引量:2
13
作者 赵龙 芦鹏飞 +5 位作者 俞重远 郭晓涛 叶寒 袁桂芳 沈阅 刘玉敏 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第5期893-900,共8页
The electronic structure, magnetic properties, and optical properties of Co-doped AIN are investigated based upon the Perdew-Burke-Ernzerhof form of generalized gradient approximation within the density functional the... The electronic structure, magnetic properties, and optical properties of Co-doped AIN are investigated based upon the Perdew-Burke-Ernzerhof form of generalized gradient approximation within the density functional theory. The band gaps narrowing of AI1-x Cox N are found with the increase of Co concentrations. The analyses of the band structures and density of states show that AI1-xCoxN alloys exhibit a halfometallie character. Moreover, we have succeeded in demonstrating that Co doped AIN system in x = 0.125 is always antiferromagnetie, which is in good agreement with the experimental results. Besides, it is shown that the insertion of Co atom leads to redshift of the optical absorption edge. Finally, the optical constants of pure A1N and AI1-xCoxN alloy, such as loss function, refractive index and reflectivity, are discussed. 展开更多
关键词 electronic structure magnetic properties optical properties co-doped A1n first principles
下载PDF
Charge transfer interfaces across black phosphorus/Co,N Co-doped carbon heterojunction for enhanced electrocatalytic water splitting 被引量:1
14
作者 Jizhou Jiang Yongjing Wang +5 位作者 Jing Wu Hao Wang Arramel Yilun Zou Jing Zou Haitao Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第11期171-178,共8页
The practicality of electrochemical water-splitting technology relies on the development of novel and efficient bifunctional electrocatalysts capable of facilitating both the hydrogen evolution reaction(HER)and oxygen... The practicality of electrochemical water-splitting technology relies on the development of novel and efficient bifunctional electrocatalysts capable of facilitating both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Black phosphorus(BP)holds tremendous promise for HER and OER electrocatalysis owing to its fully exposed atoms and high carrier mobility.However,the elec-trocatalytic performance of BP is still much lower than the expected theoretical limit,presenting an exciting challenge for further advancements.Herein,we embed electrochemically exfoliated few-layer BP nanosheets in higher Fermi level(EF)of cobalt,nitrogen co-doped carbons to form a new heterojunction(CoNC-BP),as efficient bifunctional electrocatalysts toward HER and OER for the advancement overall water splitting applications.A directed interfacial electron transfer is realized from CoNC to BP,facilitated by the lowering Fermi level(EF).This interfacial electron transfer plays a crucial role in optimizing the adsorption and desorption of active intermediates,while also introducing an abundance of hypervalent Co sites.These factors collectively contribute to the remarkable electrocatalytic activities of HER and OER performance,leading to the efficient performance of the developed CoNC-BP heterojunction in water-splitting applications.This work demonstrates a promising breakthrough that can inspire the design of high-efficiency catalysts. 展开更多
关键词 Directional charge transfer Black phosphorus Co n co-doped carbon Heterointerface Electrocatalytic water splitting
原文传递
Co/N co-doped flower-like carbon-based phase change materials toward solar energy harvesting
15
作者 Xiao Chen Lei Wang +4 位作者 Yan Gao Yang Li Xiaowei Zhang Yu Jiang Ge Wang 《Aggregate》 EI CAS 2024年第1期321-330,共10页
The photothermal conversion capacity of pristine organic phase change materials(PCMs)is inherently insufficient in solar energy utilization.To upgrade their photothermal conversion capacity,we developed bimetallic zeo... The photothermal conversion capacity of pristine organic phase change materials(PCMs)is inherently insufficient in solar energy utilization.To upgrade their photothermal conversion capacity,we developed bimetallic zeolitic imidazolate framework(ZIF)derived Co/N co-doped flower-like carbon(Co/N-FLC)-based composite PCMs toward solar energy harvesting.3D interconnected carbon framework with low interfacial thermal resistance,abundant carbon defects and high content of nitrogen doping,excellent localized surface plasmon resonance(LSPR)effect of Co nanoparticles,and light absorber Co_(3)ZnC in Co/N-FLC synergistically upgrade the photothermal capacity of(polyethylene glycol)PEG@Co/N-FLC composite PCMs with an ultrahigh photothermal conversion efficiency of 94.8%under 0.16 W/cm^(2).Uniformly anchored Co and Co_(3)ZnC nanoparticles in carbon framework guarantee excellent photon capture ability.Bridging carbon nanotubes(CNTs)in 2D carbon nanosheets further accelerate the rapid transport of phonons by constructing cross-connected heat transfer paths.Additionally,PEG@Co/N-FLC exhibits a thermal energy storage density of 100.69 J/g and excellent thermal stability and durable reliability.Therefore,PEG@Co/N-FLC composite PCMs are promising candidates to accelerate the efficient utilization of solar energy. 展开更多
关键词 bimetallic ZIF Co/n co-doped carbon phase change materials photothermal conversion thermal energy storage
原文传递
Construction of nitrogen and phosphorus co-doped graphene quantum dots/Bi5O7I composites for accelerated charge separation and enhanced photocatalytic degradation performance 被引量:4
16
作者 Kai Li Mengxia Ji +3 位作者 Rong Chen Qi Jiang Jiexiang Xia Huaming Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第8期1230-1239,共10页
Nitrogen and phosphorus co-doped graphene quantum dot-modified Bi5O7 I(NPG/Bi5O7 I)nanorods were fabricated via a simple solvothermal method.The morphology,structure,and optical properties of the as-prepared samples w... Nitrogen and phosphorus co-doped graphene quantum dot-modified Bi5O7 I(NPG/Bi5O7 I)nanorods were fabricated via a simple solvothermal method.The morphology,structure,and optical properties of the as-prepared samples were investigated by X-ray diffraction,scanning electron microscopy,high-resolution transmission electron microscopy,X-ray photoelectron spectroscopy(XPS),and diffused reflectance spectroscopy.The photocatalytic performance was estimated by degrading the broad-spectrum antibiotics tetracycline and enrofloxacin under visible light irradiation.The photodegradation activity of Bi5O7 I improved after its surface was modified with NPGs,which was attributed to an increase in the photogenerated charge transport rate and a decrease in the electron-hole pair recombination efficiency.From the electron spin resonance spectra,XPS valence band data,and free radical trapping experiment results,the main active substances involved in the photocatalytic degradation process were determined to be photogenerated holes and superoxide radicals.A possible photocatalytic degradation mechanism for NPG/Bi5O7 I nanorods was proposed. 展开更多
关键词 Bi5O7I n P co-doped graphene quantum dots PHOTOCATALYsIs Ionic liquid Charge separation
下载PDF
N/S co-doped 3D carbon framework prepared by a facile morphology-controlled solid-state pyrolysis method for oxygen reduction reaction in both acidic and alkaline media 被引量:2
17
作者 Juan Nong Min Zhu +4 位作者 Kun He Aosheng Zhu Pu Xie Minzhi Rong Mingqiu Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期220-226,共7页
Developing high-performance non-precious metal electrocatalysts for oxygen reduction reaction(ORR)is crucial for the commercialization of fuel cells and metal-air batteries.However,doped carbon-based materials only sh... Developing high-performance non-precious metal electrocatalysts for oxygen reduction reaction(ORR)is crucial for the commercialization of fuel cells and metal-air batteries.However,doped carbon-based materials only show good ORR activity in alkaline medium,and become less effective in acidic environment.We believe that an appropriate combination of both ionic and electronic transport path,and well dopant distribution of doped carbon-based materials would help to realize high ORR performance un-der both acidic and alkaline cond让ions.Accordingly,a nitrogen and sulfur co-doped carbon framework with hierarchical through-hole structure is fabricated by morphology-controlled solid-state pyrolysis of poly(aniline-co-2-ami no thiophenol)foam.The uniform high concentrations of nitrogen and sulfur,high intrinsic conductivity,and integrated three dimensional ionic and electronic transfer passageways of the 3D porous structure lead to synergistic effects in catalyzing ORR.As a result,the limiting current density of the carbonized poly(aniline-co-2-aminothiophenol)foam is equivalent to commercial Pt/C in acidic environment,and twice the latter in alkaline medium. 展开更多
关键词 3D n/s-doped CARBOn frameworks Oxygen reduction reaction(ORR) Morphology-retaining PYROLYsIs ACIDIC medium
下载PDF
Asynchronous Secret Reconstruction and Its Application to the Threshold Cryptography 被引量:2
18
作者 Lein Harn Changlu Lin 《International Journal of Communications, Network and System Sciences》 2014年第1期22-29,共8页
In Shamir’s(t,n) threshold of the secret sharing scheme, a secret is divided into n shares by a dealer and is shared among n shareholders in such a way that (a) the secret can be reconstructed when there are t or mor... In Shamir’s(t,n) threshold of the secret sharing scheme, a secret is divided into n shares by a dealer and is shared among n shareholders in such a way that (a) the secret can be reconstructed when there are t or more than t shares;and (b) the secret cannot be obtained when there are fewer than t shares. In the secret reconstruction, participating users can be either legitimate shareholders or attackers. Shamir’s scheme only considers the situation when all participating users are legitimate shareholders. In this paper, we show that when there are more than t users participating and shares are released asynchronously in the secret reconstruction, an attacker can always release his share last. In such a way, after knowing t valid shares of legitimate shareholders, the attacker can obtain the secret and therefore, can successfully impersonate to be a legitimate shareholder without being detected. We propose a simple modification of Shamir’s scheme to fix this security problem. Threshold cryptography is a research of group-oriented applications based on the secret sharing scheme. We show that a similar security problem also exists in threshold cryptographic applications. We propose a modified scheme to fix this security problem as well. 展开更多
关键词 shamir’s(t n)secret sharing scheme sECRET RECOnsTRUCTIOn THREsHOLD CRYPTOGRAPHY THREsHOLD DECRYPTIOn AsYnCHROnOUs networks
下载PDF
高压管汇材料疲劳性能测试及P-S-N模型曲线的拟合 被引量:1
19
作者 黄艳娟 周思柱 李宁 《长江大学学报(自然科学版)》 2024年第3期55-61,共7页
高压管汇作为压裂设备中的主要易损件之一,其失效危害较大。它的失效原因主要是疲劳、冲蚀、腐蚀或者材料缺陷引起的刺漏和爆裂,其中尤以疲劳失效最不可预估。目前,对于高压管汇材料的疲劳性能研究不够深入,为解决高压管汇材料疲劳寿命... 高压管汇作为压裂设备中的主要易损件之一,其失效危害较大。它的失效原因主要是疲劳、冲蚀、腐蚀或者材料缺陷引起的刺漏和爆裂,其中尤以疲劳失效最不可预估。目前,对于高压管汇材料的疲劳性能研究不够深入,为解决高压管汇材料疲劳寿命的准确描述问题,以某国产高压管汇材料为例,进行了一系列疲劳试验,并基于试验数据,采用多种分布模型和不同S-N模型进行拟合分析,得出综合评价拟合能力最强的P-S-N模型。结果表明,该材料在中长疲劳寿命区,Weibull三参数模型在7级应力水平下综合评价能力最好;在存活率分别为50%、90%、99%、99.9%时,指数S-N模型的拟合系数均大于0.98,拟合能力最好。得出的P-S-N模型曲线可以为高压管汇的疲劳寿命以及安全设计提供依据。 展开更多
关键词 高压管汇材料 正态分布模型 Weibull分布模型 P-s-n模型 幂函数s-n模型 指数s-n模型
下载PDF
Comparison of the S-, N- or P-Deprivations’ Impacts on Stomatal Conductance, Transpiration and Photosynthetic Rate of Young Maize Leaves 被引量:1
20
作者 Dimitris L. Bouranis Styliani N. Chorianopoulou +4 位作者 Alexandros Dionias Giouli Sofianou Aristotelis Thanasoulas Georgios Liakopoulos Dimosthenis Nikolopoulos 《American Journal of Plant Sciences》 2012年第8期1058-1065,共8页
Seven-day-old maize (Zea mays) plants were grown hydroponically for ten days in deprived nutrient solutions against the corresponding control grown under full nutrition;the effects of S-, N- or P-deprivation on lamina... Seven-day-old maize (Zea mays) plants were grown hydroponically for ten days in deprived nutrient solutions against the corresponding control grown under full nutrition;the effects of S-, N- or P-deprivation on laminas’ mean stomatal conductance (gs), transpiration rate (E) and photosynthetic rate (A) were monitored, along with the impact on the laminas’ total dry mass (DM), water amount (W), length and surface area (Sa). Furthermore, a time series analysis of each parameter’s response ratios (Rr), i.e. the treatment’s value divided by the corresponding control’s one, was performed. Under S-deprivation, the Rr of laminas’ mean gs, E, and A presented oscillations within a ±15% fluctuation zone, notably the “control” zone, whilst those of laminas’ total DM, water amount, surface area, and length included oscillation during the first days and deviation later on, presenting deviation during d10. Under the N-deprivation conditions all Rr time courses except the A one, included early deviations from the control zone without recovering. The deviation from the control zone appeared at d4. Under P-deprivation, all Rr time courses represented oscillations within the control zone. P-deprivation’s patterns resembled those of S-deprivation. Compared to the one of the S-deprivation, the P-one’s oscillations took place within a broader zone. Linear relationships among the various Rr patterns were found between gs-E, gs-A, E-A, DM-W and DM-Sa. In conclusion, the impact of P-deprivation appeared in an early stage and included an alleviation action, the one of N-deprivation appeared early with no alleviation action, whilst that of S-deprivation appeared later, being rather weaker when compared to the impact of the P-deprivation’s impact. 展开更多
关键词 s-Deprivation n-Deprivation P-Deprivation Hydroponics Zea Mays sTOMATAL Conductance TRAnsPIRATIOn RATE Photosynthetic RATE Response Ratios Fluctuation Analysis
下载PDF
上一页 1 2 224 下一页 到第
使用帮助 返回顶部