Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to spe...Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs.展开更多
The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying...The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying ratio H/E on the surface were studied by the experiment. The results show that the penetration depth, contact radius, plastic pile-up and the degree of elastic recovery depend strongly on the ratio H/E. Moreover, graphs were established to describe the relationship between the elastic-plastic indentation parameters and H/E. The established graphs can be used to predict the H/E of materials when compared with experimental data.展开更多
Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.A...Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.Adopting a NURBSbased parametric modelling scheme with a small number of design variables,the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method,and demonstrated in this work to give high accuracy and efficiency.Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis,in contrast to the generally complex procedures of typical shape and size sensitivity approaches.展开更多
Materials with a negative Poisson's ratio(PR)are called auxetics;they are characterized by expansion/contraction when tensioned/compressed.Given this counterintuitive behavior,they present very particular character...Materials with a negative Poisson's ratio(PR)are called auxetics;they are characterized by expansion/contraction when tensioned/compressed.Given this counterintuitive behavior,they present very particular characteristics and mechanical behavior.Geometrical models have been developed to justify and artificiall reproduce such materials' auxetic behavior.The focus of this study is the exploration of a reentrant model by analyzing the variation in the PR of reentrant structures as a function of geometrical and base material parameters.It is shown that,even in the presence of protruding ribs,there may not be auxetic behavior,and this depends on the geometry of each reentrant structure.Values determined for these parameters can be helpful as approximate reference data in the design and fabrication of auxetic lattices using reentrant geometries.展开更多
OBJECTIVE: To assess whether dietary fat intake influences Parkinson’s disease risk. DATA SOURCES: We systematically surveyed the Embase and PubMed databases, reviewing manuscripts published prior to October 2018. Th...OBJECTIVE: To assess whether dietary fat intake influences Parkinson’s disease risk. DATA SOURCES: We systematically surveyed the Embase and PubMed databases, reviewing manuscripts published prior to October 2018. The following terms were used:(“Paralysis agitans” OR “Parkinson disease” OR “Parkinson” OR “Parkinson’s” OR “Parkinson’s disease”) AND (“fat” OR “dietary fat” OR “dietary fat intake”). DATA SELECTION: Included studies were those with both dietary fat intake and Parkinson’s disease risk as exposure factors. The Newcastle-Ottawa Scale was adapted to investigate the quality of included studies. Stata V12.0 software was used for statistical analysis. OUTCOME MEASURES: The primary outcomes included the relationship between high total energy intake, high total fat intake, and Parkinson’s disease risk. The secondary outcomes included the relationship between different kinds of fatty acids and Parkinson’s disease risk. RESULTS: Nine articles met the inclusion criteria and were incorporated into this meta-analysis. Four studies scored 7 and the other five studies scored 9 on the Newcastle-Ottawa Scale, meaning that all studies were of high quality. Meta-analysis results showed that high total energy intake was associated with an increased risk of Parkinson’s disease (P = 0.000, odds ratio (OR)= 1.49, 95% confidence interval (CI): 1.26–1.75);in contrast, high total fat intake was not associated with Parkinson’s disease risk (P = 0.123, OR = 1.07, 95% CI: 0.91–1.25). Subgroup analysis revealed that polyunsaturated fatty acid intake (P = 0.010, OR = 1.03, 95% CI: 0.88–1.20) reduced the risk of Parkinson’s disease, while arachidonic acid (P = 0.026, OR = 1.15, 95% CI: 0.97–1.37) and cholesterol (P = 0.002, OR = 1.09, 95% CI: 0.92–1.29) both increased the risk of Parkinson’s disease. Subgroup analysis also demonstrated that, although the results were not significant, consumption of n-3 polyunsaturated fatty acids (P = 0.071, OR = 0.88, 95% CI: 0.73–1.05),α-linolenic acid (P = 0.06, OR = 0.86, 95% CI: 0.72–1.02), and the n-3 to n-6 ratio (P = 0.458, OR = 0.89, 95% CI: 0.75–1.06) were all linked with a trend toward reduced Parkinson’s disease risk. Monounsaturated fatty acid (P = 0.450, OR = 1.06, 95% CI: 0.91–1.23), n-6 polyunsaturated fatty acids (P = 0.100, OR = 1.15, 95% CI: 0.96–1.36) and linoleic acid (P = 0.053, OR = 1.11, 95% CI: 0.94–1.32) intakes were associated with a non-significant trend toward higher PD risk. Saturated fatty acid (P = 0.619, OR = 1.01, 95% CI: 0.87–1.18) intake was not associated with Parkinson’s disease. CONCLUSION: Dietary fat intake affects Parkinson’s disease risk, although this depends on the fatty acid subtype. Higher intake of polyunsaturated fatty acids may reduce the risk of Parkinson’s disease, while higher cholesterol and arachidonic acid intakes may elevate Parkinson’s disease risk. However, further studies and evidence are needed to validate any link between dietary fat intake and Parkinson’s disease.展开更多
In this paper, Fuzzy-Taguchi Method has been used to identify the optimal combination of influential factors by analyzing the multi responses in the face milling. Milling experiment has been performed on AMMC (Alumini...In this paper, Fuzzy-Taguchi Method has been used to identify the optimal combination of influential factors by analyzing the multi responses in the face milling. Milling experiment has been performed on AMMC (Aluminium Metal Matrix Composite), according to Taguchi orthogonal array (L27) for various combinations of influential parameters: speed, feed, depth of cut and coolant. Fuzzy logic is applied for the analysis of experimental response data of vibrations, temperature, surface roughness and resultant forces. The Fuzzy grade is calculated from this data and Fuzzy grade is optimized using Taguchi method in order to get the optimal parameter values, and also influence of parameters on individual responses is studied using Taguchi S/N ratio analysis. This work is useful for analysis of machining parameters in face milling.展开更多
The current study is performed to find sustainable solutions for the future of transportation and environmental well-being.Both conventional methods and experimental design table(L16 Orthogonal Array)techniques have b...The current study is performed to find sustainable solutions for the future of transportation and environmental well-being.Both conventional methods and experimental design table(L16 Orthogonal Array)techniques have been employed to examine and optimize a diesel-powered engine's operational and pollutant parameters.The L16 Orthogonal Array is obtained through Taguchi's experimental design approach using Minitab 16 software.The experimental design incorporated three control variables,namely engine speed,fuel type,and engine load,each with four levels.The operational parameters,namely brake thermal efficiency(BTE)and brake specific fuel consumption(BSFC),as well as the emission characteristics,including hydrocarbon(HC),carbon monoxide(CO),nitrogen oxide(NO),and smoke emissions,were acquired using the L16 orthogonal array(OA) and subsequently examined.The utilization of methodologies such as signal-to-noise(S/N) ratio and grey analysis was employed to determine the optimal operational state of the engine to achieve maximum performance while minimizing emissions.The engine's ideal state of operation,in terms of BTE and BSFC,was determined to be at 75% engine load,1000 r/min engine speed,and using 10^(-4)(in vol) carbon nanotube incorporated 20% orange peel biodiesel(OPB20CNT100) blended fuel(A3-B1-C4).The study indicated that engine load significantly influenced BTE and BSFC,with 84.05% and 87.79% contribution factors,respectively.At 25% engine load,1000 r/min,and OPB20CNT100 fuel(A1-B1-C4) CO,smoke,NO,and HC emissions were the lowest.Engine load affects emissions the most.Engine BSFC increased 3.10% and NO emissions 1.77%.BTE,CO,smoke,and HC emissions decreased by 1.9%,12.29%,47.05%,and 47.22%,respectively,at optimal operating conditions concerning diesel fuel.This study shows that Taguchi-Grey's experimental design optimizes diesel engine operational and pollutant attributes.The outcomes revealed that orange peel biodiesel infused with CNT can replace diesel fuel in an environmentally friendly way.This alternative fuel could clean and improve transportation.展开更多
A lead-shielded HPGe detector and offlineγ-ray spectra of the residual product were used to measure the cross section(CS)and ratios of isomeric CS(σm/σg)in^(134)Xe(n,2n)^(133m),gXe reactions at different energies(1...A lead-shielded HPGe detector and offlineγ-ray spectra of the residual product were used to measure the cross section(CS)and ratios of isomeric CS(σm/σg)in^(134)Xe(n,2n)^(133m),gXe reactions at different energies(13.5 MeV,13.8 MeV,14.1 MeV,14.4 MeV,14.8 MeV)relative to the^(93)Nb(n,2n)^(92)mNb reaction CS.The target was high-purity natural Xe gas under high pressure.The T(d,n)4He reaction produces neutrons.TALYS code(version 1.95)for nuclear reactions was used for calculations,with default parameters and nuclear level density models.The uncertainties in the measured CS data were thoroughly analyzed using the covariance analysis method.The results were compared with theoretical values,evaluation data,and previous experimental findings.CS data of the 134Xe(n,2n)133mXe and 134Xe(n,2n)133gXe reactions and the corresponding isomeric CS ratios at 13.5 MeV,13.8 MeV,and 14.1 MeV neutron energies are reported for the first time.This research advances our knowledge of pre-equilibrium emission in the(n,2n)reaction channel by resolving inconsistencies in the Xe data.展开更多
The seismic data from western China is very noisy. Two main reasons are static corrections and low S/N ratio problems. By seismic data processing and study these problems have been effectively solved by iterating the ...The seismic data from western China is very noisy. Two main reasons are static corrections and low S/N ratio problems. By seismic data processing and study these problems have been effectively solved by iterating the static corrections and improving the S/N ratio for pre-stack seismic data. Suppression and elimination of various other distortions has been implemented as well. Due to the fact that the S/N ratio is improved, the resolution of the seismic data is also improved.展开更多
Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform samp...Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform sampling signal was deduced. First we obtained an expression for the S/N ratio of a 1-channel A/D uniform sampling signal when the sampling frequency was equal to or greater than 2 times the frequency of the sampled signal. Based on the S/N ratio of a 2-channel A/D,alternating,non-uniform sampling signal,we analyzed the distribution of quantitative error using the quantitative error probability density method and the distribution convolution formula. From this the S/N ratio expression of a 4-channel A/D sampling signal was deduced. The simulation result shows that the deduced expression is correct.展开更多
Soil carbon to nitrogen(C/N) ratio is one of the most important variables reflecting soil quality and ecological function,and an indicator for assessing carbon and nitrogen nutrition balance of soils.Its variation ref...Soil carbon to nitrogen(C/N) ratio is one of the most important variables reflecting soil quality and ecological function,and an indicator for assessing carbon and nitrogen nutrition balance of soils.Its variation reflects the carbon and nitrogen cycling of soils.In order to explore the spatial variability of soil C/N ratio and its controlling factors of the Ili River valley in Xinjiang Uygur Autonomous Region,Northwest China,the traditional statistical methods,including correlation analysis,geostatistic alanalys and multiple regression analysis were used.The statistical results showed that the soil C/N ratio varied from 7.00 to 23.11,with a mean value of 10.92,and the coefficient of variation was 31.3%.Correlation analysis showed that longitude,altitude,precipitation,soil water,organic carbon,and total nitrogen were positively correlated with the soil C/N ratio(P < 0.01),whereas negative correlations were found between the soil C/N ratio and latitude,temperature,soil bulk density and soil p H.Ordinary Cokriging interpolation showed that r and ME were 0.73 and 0.57,respectively,indicating that the prediction accuracy was high.The spatial autocorrelation of the soil C/N ratio was 6.4 km,and the nugget effect of the soil C/N ratio was 10% with a patchy distribution,in which the area with high value(12.00–20.41) accounted for 22.6% of the total area.Land uses changed the soil C/N ratio with the order of cultivated land > grass land > forest land > garden.Multiple regression analysis showed that geographical and climatic factors,and soil physical and chemical properties could independently explain 26.8%and 55.4% of the spatial features of soil C/N ratio,while human activities could independently explain 5.4% of the spatial features only.The spatial distribution of soil C/N ratio in the study has important reference value for managing soil carbon and nitrogen,and for improving ecological function to similar regions.展开更多
Seven-day-old maize (Zea mays) plants were grown hydroponically for ten days in deprived nutrient solutions against the corresponding control grown under full nutrition;the effects of S-, N- or P-deprivation on lamina...Seven-day-old maize (Zea mays) plants were grown hydroponically for ten days in deprived nutrient solutions against the corresponding control grown under full nutrition;the effects of S-, N- or P-deprivation on laminas’ mean stomatal conductance (gs), transpiration rate (E) and photosynthetic rate (A) were monitored, along with the impact on the laminas’ total dry mass (DM), water amount (W), length and surface area (Sa). Furthermore, a time series analysis of each parameter’s response ratios (Rr), i.e. the treatment’s value divided by the corresponding control’s one, was performed. Under S-deprivation, the Rr of laminas’ mean gs, E, and A presented oscillations within a ±15% fluctuation zone, notably the “control” zone, whilst those of laminas’ total DM, water amount, surface area, and length included oscillation during the first days and deviation later on, presenting deviation during d10. Under the N-deprivation conditions all Rr time courses except the A one, included early deviations from the control zone without recovering. The deviation from the control zone appeared at d4. Under P-deprivation, all Rr time courses represented oscillations within the control zone. P-deprivation’s patterns resembled those of S-deprivation. Compared to the one of the S-deprivation, the P-one’s oscillations took place within a broader zone. Linear relationships among the various Rr patterns were found between gs-E, gs-A, E-A, DM-W and DM-Sa. In conclusion, the impact of P-deprivation appeared in an early stage and included an alleviation action, the one of N-deprivation appeared early with no alleviation action, whilst that of S-deprivation appeared later, being rather weaker when compared to the impact of the P-deprivation’s impact.展开更多
Presents the new concept of ″Desired to be small″ based on the basic function of vehicle flight control system for an optimal design of flying vehicle control system, and the definition of S/N ratio and calculation ...Presents the new concept of ″Desired to be small″ based on the basic function of vehicle flight control system for an optimal design of flying vehicle control system, and the definition of S/N ratio and calculation formula for ″Desired to be small″ dynamic characteristics, and the S/N ratio method established for design of velicle flight control systems, by which, an orthogrnal table is used to arrange test schemes, and error facters are used to simulate various interferences, and the use of S/N ratio as a design criterion to synthesise the design of dynamic and static characteristics for definition of an optimal scheme, the application of S/N ratio method to the design of a type of vehicle control system and the single run success abtained in design of control system, technical evaluation test and design finalization flight test.展开更多
This paper presents an experimental investigation focused on identifying the effects of cutting conditions and tool construction on the surface roughness and natural frequency in turning of AISI1045 steel. Machining e...This paper presents an experimental investigation focused on identifying the effects of cutting conditions and tool construction on the surface roughness and natural frequency in turning of AISI1045 steel. Machining experiments were carried out at the lathe using carbide cutting insert coated with TiC and two forms of cutting tools made of AISI 5140 steel. Three levels for spindle speed, depth of cut, feed rate and tool overhang were chosen as cutting variables. The Taguchi method L9 orthogonal array was applied to design of experiment. By the help of signal-to-noise ratio and analysis of variance, it was concluded that spindle speed has the significant effect on the surface roughness, while tool overhang is the dominant factor affecting natural frequency for both cutting tools. In addition, the optimum cutting conditions for surface roughness and natural frequency were found at different levels. Finally, confirmation experiments were conducted to verify the effectiveness and efficiency of the Taguchi method in optimizing the cutting parameters for surface roughness and natural frequency.展开更多
基金The authors thank the Yayasan Universiti Teknologi PETRONAS(YUTP FRG Grant No.015LC0-428)at Universiti Teknologi PETRO-NAS for supporting this study.
文摘Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs.
基金Science Research Foundation of Shanghai Municipal Education Commission (No.06VZ004)
文摘The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying ratio H/E on the surface were studied by the experiment. The results show that the penetration depth, contact radius, plastic pile-up and the degree of elastic recovery depend strongly on the ratio H/E. Moreover, graphs were established to describe the relationship between the elastic-plastic indentation parameters and H/E. The established graphs can be used to predict the H/E of materials when compared with experimental data.
基金National Natural Science Foundation of China(Grant Nos.51705158 and 51805174)the Fundamental Research Funds for the Central Universities(Grant Nos.2018MS45 and 2019MS059)。
文摘Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.Adopting a NURBSbased parametric modelling scheme with a small number of design variables,the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method,and demonstrated in this work to give high accuracy and efficiency.Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis,in contrast to the generally complex procedures of typical shape and size sensitivity approaches.
文摘Materials with a negative Poisson's ratio(PR)are called auxetics;they are characterized by expansion/contraction when tensioned/compressed.Given this counterintuitive behavior,they present very particular characteristics and mechanical behavior.Geometrical models have been developed to justify and artificiall reproduce such materials' auxetic behavior.The focus of this study is the exploration of a reentrant model by analyzing the variation in the PR of reentrant structures as a function of geometrical and base material parameters.It is shown that,even in the presence of protruding ribs,there may not be auxetic behavior,and this depends on the geometry of each reentrant structure.Values determined for these parameters can be helpful as approximate reference data in the design and fabrication of auxetic lattices using reentrant geometries.
基金supported by the National Natural Science Foundation of China,No.31200868(to XC)
文摘OBJECTIVE: To assess whether dietary fat intake influences Parkinson’s disease risk. DATA SOURCES: We systematically surveyed the Embase and PubMed databases, reviewing manuscripts published prior to October 2018. The following terms were used:(“Paralysis agitans” OR “Parkinson disease” OR “Parkinson” OR “Parkinson’s” OR “Parkinson’s disease”) AND (“fat” OR “dietary fat” OR “dietary fat intake”). DATA SELECTION: Included studies were those with both dietary fat intake and Parkinson’s disease risk as exposure factors. The Newcastle-Ottawa Scale was adapted to investigate the quality of included studies. Stata V12.0 software was used for statistical analysis. OUTCOME MEASURES: The primary outcomes included the relationship between high total energy intake, high total fat intake, and Parkinson’s disease risk. The secondary outcomes included the relationship between different kinds of fatty acids and Parkinson’s disease risk. RESULTS: Nine articles met the inclusion criteria and were incorporated into this meta-analysis. Four studies scored 7 and the other five studies scored 9 on the Newcastle-Ottawa Scale, meaning that all studies were of high quality. Meta-analysis results showed that high total energy intake was associated with an increased risk of Parkinson’s disease (P = 0.000, odds ratio (OR)= 1.49, 95% confidence interval (CI): 1.26–1.75);in contrast, high total fat intake was not associated with Parkinson’s disease risk (P = 0.123, OR = 1.07, 95% CI: 0.91–1.25). Subgroup analysis revealed that polyunsaturated fatty acid intake (P = 0.010, OR = 1.03, 95% CI: 0.88–1.20) reduced the risk of Parkinson’s disease, while arachidonic acid (P = 0.026, OR = 1.15, 95% CI: 0.97–1.37) and cholesterol (P = 0.002, OR = 1.09, 95% CI: 0.92–1.29) both increased the risk of Parkinson’s disease. Subgroup analysis also demonstrated that, although the results were not significant, consumption of n-3 polyunsaturated fatty acids (P = 0.071, OR = 0.88, 95% CI: 0.73–1.05),α-linolenic acid (P = 0.06, OR = 0.86, 95% CI: 0.72–1.02), and the n-3 to n-6 ratio (P = 0.458, OR = 0.89, 95% CI: 0.75–1.06) were all linked with a trend toward reduced Parkinson’s disease risk. Monounsaturated fatty acid (P = 0.450, OR = 1.06, 95% CI: 0.91–1.23), n-6 polyunsaturated fatty acids (P = 0.100, OR = 1.15, 95% CI: 0.96–1.36) and linoleic acid (P = 0.053, OR = 1.11, 95% CI: 0.94–1.32) intakes were associated with a non-significant trend toward higher PD risk. Saturated fatty acid (P = 0.619, OR = 1.01, 95% CI: 0.87–1.18) intake was not associated with Parkinson’s disease. CONCLUSION: Dietary fat intake affects Parkinson’s disease risk, although this depends on the fatty acid subtype. Higher intake of polyunsaturated fatty acids may reduce the risk of Parkinson’s disease, while higher cholesterol and arachidonic acid intakes may elevate Parkinson’s disease risk. However, further studies and evidence are needed to validate any link between dietary fat intake and Parkinson’s disease.
文摘In this paper, Fuzzy-Taguchi Method has been used to identify the optimal combination of influential factors by analyzing the multi responses in the face milling. Milling experiment has been performed on AMMC (Aluminium Metal Matrix Composite), according to Taguchi orthogonal array (L27) for various combinations of influential parameters: speed, feed, depth of cut and coolant. Fuzzy logic is applied for the analysis of experimental response data of vibrations, temperature, surface roughness and resultant forces. The Fuzzy grade is calculated from this data and Fuzzy grade is optimized using Taguchi method in order to get the optimal parameter values, and also influence of parameters on individual responses is studied using Taguchi S/N ratio analysis. This work is useful for analysis of machining parameters in face milling.
文摘The current study is performed to find sustainable solutions for the future of transportation and environmental well-being.Both conventional methods and experimental design table(L16 Orthogonal Array)techniques have been employed to examine and optimize a diesel-powered engine's operational and pollutant parameters.The L16 Orthogonal Array is obtained through Taguchi's experimental design approach using Minitab 16 software.The experimental design incorporated three control variables,namely engine speed,fuel type,and engine load,each with four levels.The operational parameters,namely brake thermal efficiency(BTE)and brake specific fuel consumption(BSFC),as well as the emission characteristics,including hydrocarbon(HC),carbon monoxide(CO),nitrogen oxide(NO),and smoke emissions,were acquired using the L16 orthogonal array(OA) and subsequently examined.The utilization of methodologies such as signal-to-noise(S/N) ratio and grey analysis was employed to determine the optimal operational state of the engine to achieve maximum performance while minimizing emissions.The engine's ideal state of operation,in terms of BTE and BSFC,was determined to be at 75% engine load,1000 r/min engine speed,and using 10^(-4)(in vol) carbon nanotube incorporated 20% orange peel biodiesel(OPB20CNT100) blended fuel(A3-B1-C4).The study indicated that engine load significantly influenced BTE and BSFC,with 84.05% and 87.79% contribution factors,respectively.At 25% engine load,1000 r/min,and OPB20CNT100 fuel(A1-B1-C4) CO,smoke,NO,and HC emissions were the lowest.Engine load affects emissions the most.Engine BSFC increased 3.10% and NO emissions 1.77%.BTE,CO,smoke,and HC emissions decreased by 1.9%,12.29%,47.05%,and 47.22%,respectively,at optimal operating conditions concerning diesel fuel.This study shows that Taguchi-Grey's experimental design optimizes diesel engine operational and pollutant attributes.The outcomes revealed that orange peel biodiesel infused with CNT can replace diesel fuel in an environmentally friendly way.This alternative fuel could clean and improve transportation.
基金supported by the National Natural science Foundation of China(Nos.11875016,12165006).
文摘A lead-shielded HPGe detector and offlineγ-ray spectra of the residual product were used to measure the cross section(CS)and ratios of isomeric CS(σm/σg)in^(134)Xe(n,2n)^(133m),gXe reactions at different energies(13.5 MeV,13.8 MeV,14.1 MeV,14.4 MeV,14.8 MeV)relative to the^(93)Nb(n,2n)^(92)mNb reaction CS.The target was high-purity natural Xe gas under high pressure.The T(d,n)4He reaction produces neutrons.TALYS code(version 1.95)for nuclear reactions was used for calculations,with default parameters and nuclear level density models.The uncertainties in the measured CS data were thoroughly analyzed using the covariance analysis method.The results were compared with theoretical values,evaluation data,and previous experimental findings.CS data of the 134Xe(n,2n)133mXe and 134Xe(n,2n)133gXe reactions and the corresponding isomeric CS ratios at 13.5 MeV,13.8 MeV,and 14.1 MeV neutron energies are reported for the first time.This research advances our knowledge of pre-equilibrium emission in the(n,2n)reaction channel by resolving inconsistencies in the Xe data.
文摘The seismic data from western China is very noisy. Two main reasons are static corrections and low S/N ratio problems. By seismic data processing and study these problems have been effectively solved by iterating the static corrections and improving the S/N ratio for pre-stack seismic data. Suppression and elimination of various other distortions has been implemented as well. Due to the fact that the S/N ratio is improved, the resolution of the seismic data is also improved.
基金Projects 07KJZ11 supported by the President Fund of Xuzhou Medical School07KJB310117 by the Education Department of Jiangsu Province
文摘Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform sampling signal was deduced. First we obtained an expression for the S/N ratio of a 1-channel A/D uniform sampling signal when the sampling frequency was equal to or greater than 2 times the frequency of the sampled signal. Based on the S/N ratio of a 2-channel A/D,alternating,non-uniform sampling signal,we analyzed the distribution of quantitative error using the quantitative error probability density method and the distribution convolution formula. From this the S/N ratio expression of a 4-channel A/D sampling signal was deduced. The simulation result shows that the deduced expression is correct.
基金Under the auspices of National Science and Technology Support Program of China(No.2014BAC15B03)the West Light Funds of Chinese Academy of Sciences(No.YB201302)
文摘Soil carbon to nitrogen(C/N) ratio is one of the most important variables reflecting soil quality and ecological function,and an indicator for assessing carbon and nitrogen nutrition balance of soils.Its variation reflects the carbon and nitrogen cycling of soils.In order to explore the spatial variability of soil C/N ratio and its controlling factors of the Ili River valley in Xinjiang Uygur Autonomous Region,Northwest China,the traditional statistical methods,including correlation analysis,geostatistic alanalys and multiple regression analysis were used.The statistical results showed that the soil C/N ratio varied from 7.00 to 23.11,with a mean value of 10.92,and the coefficient of variation was 31.3%.Correlation analysis showed that longitude,altitude,precipitation,soil water,organic carbon,and total nitrogen were positively correlated with the soil C/N ratio(P < 0.01),whereas negative correlations were found between the soil C/N ratio and latitude,temperature,soil bulk density and soil p H.Ordinary Cokriging interpolation showed that r and ME were 0.73 and 0.57,respectively,indicating that the prediction accuracy was high.The spatial autocorrelation of the soil C/N ratio was 6.4 km,and the nugget effect of the soil C/N ratio was 10% with a patchy distribution,in which the area with high value(12.00–20.41) accounted for 22.6% of the total area.Land uses changed the soil C/N ratio with the order of cultivated land > grass land > forest land > garden.Multiple regression analysis showed that geographical and climatic factors,and soil physical and chemical properties could independently explain 26.8%and 55.4% of the spatial features of soil C/N ratio,while human activities could independently explain 5.4% of the spatial features only.The spatial distribution of soil C/N ratio in the study has important reference value for managing soil carbon and nitrogen,and for improving ecological function to similar regions.
文摘Seven-day-old maize (Zea mays) plants were grown hydroponically for ten days in deprived nutrient solutions against the corresponding control grown under full nutrition;the effects of S-, N- or P-deprivation on laminas’ mean stomatal conductance (gs), transpiration rate (E) and photosynthetic rate (A) were monitored, along with the impact on the laminas’ total dry mass (DM), water amount (W), length and surface area (Sa). Furthermore, a time series analysis of each parameter’s response ratios (Rr), i.e. the treatment’s value divided by the corresponding control’s one, was performed. Under S-deprivation, the Rr of laminas’ mean gs, E, and A presented oscillations within a ±15% fluctuation zone, notably the “control” zone, whilst those of laminas’ total DM, water amount, surface area, and length included oscillation during the first days and deviation later on, presenting deviation during d10. Under the N-deprivation conditions all Rr time courses except the A one, included early deviations from the control zone without recovering. The deviation from the control zone appeared at d4. Under P-deprivation, all Rr time courses represented oscillations within the control zone. P-deprivation’s patterns resembled those of S-deprivation. Compared to the one of the S-deprivation, the P-one’s oscillations took place within a broader zone. Linear relationships among the various Rr patterns were found between gs-E, gs-A, E-A, DM-W and DM-Sa. In conclusion, the impact of P-deprivation appeared in an early stage and included an alleviation action, the one of N-deprivation appeared early with no alleviation action, whilst that of S-deprivation appeared later, being rather weaker when compared to the impact of the P-deprivation’s impact.
文摘Presents the new concept of ″Desired to be small″ based on the basic function of vehicle flight control system for an optimal design of flying vehicle control system, and the definition of S/N ratio and calculation formula for ″Desired to be small″ dynamic characteristics, and the S/N ratio method established for design of velicle flight control systems, by which, an orthogrnal table is used to arrange test schemes, and error facters are used to simulate various interferences, and the use of S/N ratio as a design criterion to synthesise the design of dynamic and static characteristics for definition of an optimal scheme, the application of S/N ratio method to the design of a type of vehicle control system and the single run success abtained in design of control system, technical evaluation test and design finalization flight test.
文摘This paper presents an experimental investigation focused on identifying the effects of cutting conditions and tool construction on the surface roughness and natural frequency in turning of AISI1045 steel. Machining experiments were carried out at the lathe using carbide cutting insert coated with TiC and two forms of cutting tools made of AISI 5140 steel. Three levels for spindle speed, depth of cut, feed rate and tool overhang were chosen as cutting variables. The Taguchi method L9 orthogonal array was applied to design of experiment. By the help of signal-to-noise ratio and analysis of variance, it was concluded that spindle speed has the significant effect on the surface roughness, while tool overhang is the dominant factor affecting natural frequency for both cutting tools. In addition, the optimum cutting conditions for surface roughness and natural frequency were found at different levels. Finally, confirmation experiments were conducted to verify the effectiveness and efficiency of the Taguchi method in optimizing the cutting parameters for surface roughness and natural frequency.