期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
On the values of representation functions 被引量:1
1
作者 CHEN YongGao 《Science China Mathematics》 SCIE 2011年第7期1317-1331,共15页
For a set A of nonnegative integers, the representation functions R2(A,n) and R3(A,n) are defined as the numbers of solutions to the equation n = a + a′ with a,a′∈ A, a < a′ and a a′, respectively. Let N be th... For a set A of nonnegative integers, the representation functions R2(A,n) and R3(A,n) are defined as the numbers of solutions to the equation n = a + a′ with a,a′∈ A, a < a′ and a a′, respectively. Let N be the set of nonnegative integers. Given n0 > 0, it is known that there exist A,A′■ N such that R2(A′,n) = R2(N \ A′,n) and R3(A,n) = R3(N \ A,n) for all n n0. We obtain several related results. For example, we prove that: If A ■ N such that R3(A,n) = R3(N \ A,n) for all n n0, then (1) for any n n0 we have R3(A,n) = R3(N \ A,n) > c1n - c2, where c1,c2 are two positive constants depending only on n0; (2) for any α < 116, the set of integers n with R3(A,n) > αn has the density one. The answers to the four problems in Chen-Tang (2009) are affirmative. We also pose two open problems for further research. 展开更多
关键词 PARTITION representation function binary representation sárkzy’s problem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部