S-ALOHA (Slotted ALOHA) random access protocol is a widely used protocol mainly for the transmission of short packets in wireless networks. Most papers consider either an infinite population model where the impact o...S-ALOHA (Slotted ALOHA) random access protocol is a widely used protocol mainly for the transmission of short packets in wireless networks. Most papers consider either an infinite population model where the impact of the backoff protocol cannot be adequately evaluated or a finite population model where the number of nodes is fixed. In this letter, a combination of both models is proposed using the time-scale decomposition technique. This methodology allows to study the system under more realistic conditions where the dynamics of users enter and leaving the system are reflected on the performance of the system as well as the impact of the backoff protocol. Also, it allows studying the system in non-saturation conditions. The proposed methodology divides the analysis in two parts: packet-level and connection-level. This analysis renders suitable results when the time scale of the packet level and connection level statistics is different. On the other hand, when these scales are similar, the proposed methodology is no longer suited.展开更多
Recently, integrated Satellite-Terrestrial(S-T) communication system, especially the integration of satellite communication with 5G/6G, is regarded as a research hotpot. Future integrated S-T communication systems are...Recently, integrated Satellite-Terrestrial(S-T) communication system, especially the integration of satellite communication with 5G/6G, is regarded as a research hotpot. Future integrated S-T communication systems are demanding a more compatible and robust physical layer waveform. Considering physical layer access waveform design, this paper proposed a novel Spread Spectrum Generalized Frequency Division Multiplexing(SS-GFDM) scheme for integrated S-T communication system. Traditional GFDM has many advantages such as excellent adaptability and low out-ofband(OOB) radiation. However, because of intrinsic inter carrier interference(ICI) and low signal-to-noise ratio(SNR), the multiple access performance is degraded. In this paper, we introduced CDMA technology into GFDM. Two different spread spectrum modes, Cyclic Code Shift Keying(CCSK) soft spread spectrum and Direct Sequence Spread Spectrum(DSSS), are considered and compared in this paper to illustrate the benefits of GFDM-CDMA in low SNR scenario. Moreover, this scheme integrates the slot-ALOHA protocol with GFDM-CDMA, which extends access freedom in frequency, time and code domain. The simulation and analysis results show that the proposed GFDM-CDMA scheme reduces the performance degradation caused by interference. It is effective in typical satellite channel with low complexity. Meanwhile, the peak-average-power-ratio(PAPR) and access performance has been enhanced significantly.展开更多
文摘S-ALOHA (Slotted ALOHA) random access protocol is a widely used protocol mainly for the transmission of short packets in wireless networks. Most papers consider either an infinite population model where the impact of the backoff protocol cannot be adequately evaluated or a finite population model where the number of nodes is fixed. In this letter, a combination of both models is proposed using the time-scale decomposition technique. This methodology allows to study the system under more realistic conditions where the dynamics of users enter and leaving the system are reflected on the performance of the system as well as the impact of the backoff protocol. Also, it allows studying the system in non-saturation conditions. The proposed methodology divides the analysis in two parts: packet-level and connection-level. This analysis renders suitable results when the time scale of the packet level and connection level statistics is different. On the other hand, when these scales are similar, the proposed methodology is no longer suited.
基金sponsored by National Natural Science Foundation of China (No. 61871422, No. 61801319)Chinese ministry funds (No.6140518050316, No.6141B06290101)
文摘Recently, integrated Satellite-Terrestrial(S-T) communication system, especially the integration of satellite communication with 5G/6G, is regarded as a research hotpot. Future integrated S-T communication systems are demanding a more compatible and robust physical layer waveform. Considering physical layer access waveform design, this paper proposed a novel Spread Spectrum Generalized Frequency Division Multiplexing(SS-GFDM) scheme for integrated S-T communication system. Traditional GFDM has many advantages such as excellent adaptability and low out-ofband(OOB) radiation. However, because of intrinsic inter carrier interference(ICI) and low signal-to-noise ratio(SNR), the multiple access performance is degraded. In this paper, we introduced CDMA technology into GFDM. Two different spread spectrum modes, Cyclic Code Shift Keying(CCSK) soft spread spectrum and Direct Sequence Spread Spectrum(DSSS), are considered and compared in this paper to illustrate the benefits of GFDM-CDMA in low SNR scenario. Moreover, this scheme integrates the slot-ALOHA protocol with GFDM-CDMA, which extends access freedom in frequency, time and code domain. The simulation and analysis results show that the proposed GFDM-CDMA scheme reduces the performance degradation caused by interference. It is effective in typical satellite channel with low complexity. Meanwhile, the peak-average-power-ratio(PAPR) and access performance has been enhanced significantly.