期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性 被引量:1
1
作者 李高芳 殷文 +5 位作者 黄敬国 崔昊杨 叶焓静 高艳卿 黄志明 褚君浩 《物理学报》 SCIE EI CAS CSCD 北大核心 2023年第4期272-282,共11页
本文采用透射式太赫兹时域光谱技术研究0.3—2.5 THz范围内本征GaSe,S掺杂质量分数为2.5%GaSe(GaSe:S(2.5%))和S掺杂质量分数为7%GaSe(GaSe:S(7%))晶体的电导率特性,并利用Drude-SmithLorentz模型对复电导率进行拟合.研究发现GaSe晶体... 本文采用透射式太赫兹时域光谱技术研究0.3—2.5 THz范围内本征GaSe,S掺杂质量分数为2.5%GaSe(GaSe:S(2.5%))和S掺杂质量分数为7%GaSe(GaSe:S(7%))晶体的电导率特性,并利用Drude-SmithLorentz模型对复电导率进行拟合.研究发现GaSe晶体的电导率实部随S掺杂浓度的增大而减小,主要是由于S掺杂使GaSe晶体的费米能级逐渐向电荷中性能级转移,载流子浓度下降引起的.本征GaSe和GaSe:S(2.5%)在约0.56 THz处有明显的晶格振动峰,而GaSe:S(7%)在0.56 THz附近无晶格振动峰,这主要是由于S掺杂提高了晶体的结构硬度,减弱了晶体的层间刚性振动.且3个样品均在约1.81 THz处存在明显的窄晶格振动峰,强度随S掺杂浓度的增大先减小再增大,主要是由于S掺杂降低了GaSe的局部结构缺陷,减弱了窄晶格振动峰强度,而过量的S掺杂生成β型GaS晶体,进而增加晶体的局部结构缺陷,窄晶格振动峰强度随之增强.GaSe晶体约在1.07 THz和2.28 THz处的宽晶格振动峰强度随S掺杂浓度的增大而减弱甚至消失,主要是由于S掺杂产生替位杂质(S取代Se)和GaS间隙杂质,降低了基频声子振动强度,从而减弱了晶体二阶声子差模引起的晶格振动.结果表明,S掺杂可以有效抑制GaSe晶体的晶格振动,降低电导率,减少在THz波段的功率损耗.此研究为低损耗THz器件的设计和制作提供重要的数据支撑和理论依据. 展开更多
关键词 太赫兹时域光谱 s掺杂硒化镓 电导率 Drude-smith-Lorentz模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部