本文采用密度泛函理论方法对β-BaCu_2S_2的电子结构和光学性质进行了理论计算和分析.优化后的晶格常数与实验值符合良好.通过能带分析表明该晶体是一种直接带隙半导体,得出的带隙值为0.562 e V,与其他理论计算方法得出的结果接近.对介...本文采用密度泛函理论方法对β-BaCu_2S_2的电子结构和光学性质进行了理论计算和分析.优化后的晶格常数与实验值符合良好.通过能带分析表明该晶体是一种直接带隙半导体,得出的带隙值为0.562 e V,与其他理论计算方法得出的结果接近.对介电函数的计算表明β-BaCu_2S_2是一种各向异性材料,随着压强的增大,介电函数虚部向高能区域移动,且峰值变高.计算所得静折射率的平方近似于静介电常数,与理论公式符合良好.随着压强的增加,晶体的光学常数如吸收系数、反射率、折射率和能量损失函数曲线均向光子能量增大的方向移动.研究表明加压是改变β-BaCu_2S_2晶体电子结构、调制光学性质的有效手段.展开更多
为探究K掺杂对β-BaCu_2S_2晶体电子结构和光学性质的影响,采用基于密度泛函理论的第一性原理赝势平面波理论方法,对不同K掺杂比例β-BaCu_2S_2的电子结构和光学性质进行理论计算和分析.计算结果表明:β-BaCu_2S_2是一种直接带隙半导体...为探究K掺杂对β-BaCu_2S_2晶体电子结构和光学性质的影响,采用基于密度泛函理论的第一性原理赝势平面波理论方法,对不同K掺杂比例β-BaCu_2S_2的电子结构和光学性质进行理论计算和分析.计算结果表明:β-BaCu_2S_2是一种直接带隙半导体,带隙值为0.566 e V.由其能带结构可知,随着K掺杂比例的增加,β-BaCu_2S_2晶体的带隙变窄,导电性增强.此外,随着K掺杂物质的量比例的增加,晶体静态介电常数明显变大,说明此时有电子从价带跃迁到导带.K掺杂可以明显改变晶体的光学性质,随着K掺杂物质的量比例的增加,晶体吸收系数的吸收边发生红移.研究结果说明K掺杂可以改变晶体的电子结构,调制晶体的光学性质,这为β-BaCu_2S_2光电材料的实际应用提供了一定的理论指导.展开更多
The hetero-metal clusters [■5-C5H4C(O)CH2CH2C(O)OCH3]FeCoM(■3-S)(CO)8 (M = Mo 1, M = W 2) were prepared by thermal reactions of FeCo2(CO)9((3-S) with metal exchange reagent [■5-C5H4C(O)CH2CH2C(O)O...The hetero-metal clusters [■5-C5H4C(O)CH2CH2C(O)OCH3]FeCoM(■3-S)(CO)8 (M = Mo 1, M = W 2) were prepared by thermal reactions of FeCo2(CO)9((3-S) with metal exchange reagent [■5-C5H4C(O)CH2CH2C(O)OCH3]M(CO)3Na (M = Mo or W) in THF. Cluster 1 reacted with 2,4-dinitrophenylhydrazine at room temperature to yield the cluster hydrazone derivative ((3-S)CoFeMo(CO)8[(5-C5H4C(NR)Me] [R = NHC6H3-2,4-(NO2)2] 3. All the compounds were characterized by elemental analyses, IR and NMR spectra. Cluster 1 was determined by single crystal X-ray diffraction. Crystal data: C18H11O11SCoFeMo, Mr = 646.05, triclinic, space group P, a = 8.148(2), b = 10.685(3), c = 13.410(4) ?, ( = 100.077(5), ( = 102.452(5), ( = 91.108(6)(, V = 1120.4(5) ?3, Z = 2, Dc = 1.915 g/cm3, F(000) = 636, ( = 2.071 mm(1, the final R = 0.0378 and wR = 0.0968 for 5074 observations with (I > 2((I)).展开更多
The new chiral clusters [h5-C5H4C(NR)CH3]RuNiM(CO)5(m3-S) (R = NH-C6H3-2,4- (NO2)2, M = Mo, 3; M = W, 4) were synthesized and the structure of cluster 3 was determined by single-crystal X-ray analysis. Crystal data: C...The new chiral clusters [h5-C5H4C(NR)CH3]RuNiM(CO)5(m3-S) (R = NH-C6H3-2,4- (NO2)2, M = Mo, 3; M = W, 4) were synthesized and the structure of cluster 3 was determined by single-crystal X-ray analysis. Crystal data: C23H16O9N4MoNiRuS, Mr = 780.18, orthorhombic, space group Pbca with the following crystallographic parameters: a = 13.207(4), b = 16.036(5), c = 25.513(8) , Z = 8, V = 5403(3) 3, Dc = 1.918 g/cm3, m = 1.834 mm-1 and F(000) = 3072. The final R = 0.0512 and wR = 0.1132 for 2525 reflections with I > 2.00s(I).展开更多
文摘本文采用密度泛函理论方法对β-BaCu_2S_2的电子结构和光学性质进行了理论计算和分析.优化后的晶格常数与实验值符合良好.通过能带分析表明该晶体是一种直接带隙半导体,得出的带隙值为0.562 e V,与其他理论计算方法得出的结果接近.对介电函数的计算表明β-BaCu_2S_2是一种各向异性材料,随着压强的增大,介电函数虚部向高能区域移动,且峰值变高.计算所得静折射率的平方近似于静介电常数,与理论公式符合良好.随着压强的增加,晶体的光学常数如吸收系数、反射率、折射率和能量损失函数曲线均向光子能量增大的方向移动.研究表明加压是改变β-BaCu_2S_2晶体电子结构、调制光学性质的有效手段.
文摘为探究K掺杂对β-BaCu_2S_2晶体电子结构和光学性质的影响,采用基于密度泛函理论的第一性原理赝势平面波理论方法,对不同K掺杂比例β-BaCu_2S_2的电子结构和光学性质进行理论计算和分析.计算结果表明:β-BaCu_2S_2是一种直接带隙半导体,带隙值为0.566 e V.由其能带结构可知,随着K掺杂比例的增加,β-BaCu_2S_2晶体的带隙变窄,导电性增强.此外,随着K掺杂物质的量比例的增加,晶体静态介电常数明显变大,说明此时有电子从价带跃迁到导带.K掺杂可以明显改变晶体的光学性质,随着K掺杂物质的量比例的增加,晶体吸收系数的吸收边发生红移.研究结果说明K掺杂可以改变晶体的电子结构,调制晶体的光学性质,这为β-BaCu_2S_2光电材料的实际应用提供了一定的理论指导.
基金the National Natural Science Foundation of China.
文摘The hetero-metal clusters [■5-C5H4C(O)CH2CH2C(O)OCH3]FeCoM(■3-S)(CO)8 (M = Mo 1, M = W 2) were prepared by thermal reactions of FeCo2(CO)9((3-S) with metal exchange reagent [■5-C5H4C(O)CH2CH2C(O)OCH3]M(CO)3Na (M = Mo or W) in THF. Cluster 1 reacted with 2,4-dinitrophenylhydrazine at room temperature to yield the cluster hydrazone derivative ((3-S)CoFeMo(CO)8[(5-C5H4C(NR)Me] [R = NHC6H3-2,4-(NO2)2] 3. All the compounds were characterized by elemental analyses, IR and NMR spectra. Cluster 1 was determined by single crystal X-ray diffraction. Crystal data: C18H11O11SCoFeMo, Mr = 646.05, triclinic, space group P, a = 8.148(2), b = 10.685(3), c = 13.410(4) ?, ( = 100.077(5), ( = 102.452(5), ( = 91.108(6)(, V = 1120.4(5) ?3, Z = 2, Dc = 1.915 g/cm3, F(000) = 636, ( = 2.071 mm(1, the final R = 0.0378 and wR = 0.0968 for 5074 observations with (I > 2((I)).
基金This work was supported by the National Natural Science Foundation of China
文摘The new chiral clusters [h5-C5H4C(NR)CH3]RuNiM(CO)5(m3-S) (R = NH-C6H3-2,4- (NO2)2, M = Mo, 3; M = W, 4) were synthesized and the structure of cluster 3 was determined by single-crystal X-ray analysis. Crystal data: C23H16O9N4MoNiRuS, Mr = 780.18, orthorhombic, space group Pbca with the following crystallographic parameters: a = 13.207(4), b = 16.036(5), c = 25.513(8) , Z = 8, V = 5403(3) 3, Dc = 1.918 g/cm3, m = 1.834 mm-1 and F(000) = 3072. The final R = 0.0512 and wR = 0.1132 for 2525 reflections with I > 2.00s(I).