We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field t...We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA).展开更多
Assuming spheroidal and spherical particle shapes for mineral dust aerosols,the effect of particle shape on dust aerosol optical depth retrievals,and subsequently on instantaneous shortwave direct radiative forcing(S...Assuming spheroidal and spherical particle shapes for mineral dust aerosols,the effect of particle shape on dust aerosol optical depth retrievals,and subsequently on instantaneous shortwave direct radiative forcing(SWDRF) at the top of the atmosphere(TOA),is assessed based on Moderate Resolution Imaging Spectroradiometer(MODIS) data for a case study.Specifically,a simplified aerosol retrieval algorithm based on the principle of the Deep Blue aerosol retrieval method is employed to retrieve dust aerosol optical depths,and the Fu–Liou radiative transfer model is used to derive the instantaneous SWDRF of dust at the TOA for cloud-free conditions.Without considering the effect of particle shape on dust aerosol optical depth retrievals,the effect of particle shape on the scattering properties of dust aerosols(e.g.,extinction efficiency,single scattering albedo and asymmetry factor) is negligible,which can lead to a relative difference of at most 5% for the SWDRF at the TOA.However,the effect of particle shape on the SWDRF cannot be neglected provided that the effect of particle shape on dust aerosol optical depth retrievals is also taken into account for SWDRF calculations.The corresponding results in an instantaneous case study show that the relative differences of the SWDRF at the TOA between spheroids and spheres depend critically on the scattering angles at which dust aerosol optical depths are retrieved,and can be up to 40% for low dust-loading conditions.展开更多
In order to decrease the anisotropy of mechanical properties, the rigid-plastic mechanical model for the forging method with horizontal V-shaped anvil is presented. The forging method, through the change of anvils sha...In order to decrease the anisotropy of mechanical properties, the rigid-plastic mechanical model for the forging method with horizontal V-shaped anvil is presented. The forging method, through the change of anvils shape, is able to control fibrous tissue direction, to improve the anisotropy of mechanical properties of axial forgings, to realize uniform forging. Therefore, the forging method can overcome the defect that conventional forging methods produce. The mechanism of the forging method with horizontal V-shaped anvil and the process of metal deformation are analyzed. The agreement of theoretical analysis with experimental study verifies the fact that the forging method with horizontal V-shaped anvil can control effectively the mechanical properties of axial forgings.展开更多
Based on the action mechanism of linear shaped charge( LSC ), penetration performance of LSC on rock was studied. The optimal standoff and the vertex angle of LSC were studied and determined by lab experiments. Thro...Based on the action mechanism of linear shaped charge( LSC ), penetration performance of LSC on rock was studied. The optimal standoff and the vertex angle of LSC were studied and determined by lab experiments. Through cutting sand-cement grout samples, the spacing interval of boreholes can approach 17.5 times of the bore-hole' s diameter, and the result of the directional expansion of crack is satisfactory. The result of field experiment indicates cutting effect is very good, the ruggedness in fracture plane is less than 50 mm, the rate of half-hole marks is nearly 100 % , and the crack inspection shows that there is no damage in the internal of the cutting part. All these suggest that the orientation fracture blasting with LSC is a good means in directional fracture controlled blasting and is worth popularizing widely.展开更多
Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheat...Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi.展开更多
The gradient element of the aperture gradient map is utilized directly to generate the aperture shape without modulation.This process can be likened to choosing the direction of negative gradient descent for the gener...The gradient element of the aperture gradient map is utilized directly to generate the aperture shape without modulation.This process can be likened to choosing the direction of negative gradient descent for the generic aperture shape optimiza-tion.The negative gradient descent direction is more suitable under local conditions and has a slow convergence rate.To overcome these limitations,this study introduced conjugate gradients into aperture shape optimization based on gradient modulation.First,the aperture gradient map of the current beam was obtained for the proposed aperture shape optimiza-tion method,and the gradients of the aperture gradient map were modulated using conjugate gradients to form a modulated gradient map.The aperture shape was generated based on the modulated gradient map.The proposed optimization method does not change the optimal solution of the original optimization problem,but changes the iterative search direction when generating the aperture shape.The performance of the proposed method was verified using cases of head and neck cancer,and prostate cancer.The optimization results indicate that the proposed optimization method better protects the organs at risk and rapidly reduces the objective function value by ensuring a similar dose distribution to the planning target volume.Compared to the contrasting methods,the normal tissue complication probability obtained by the proposed optimization method decreased by up to 4.61%,and the optimization time of the proposed method decreased by 5.26%on average for ten cancer cases.The effectiveness and acceleration of the proposed method were verified through comparative experiments.According to the comparative experiments,the results indicate that the proposed optimization method is more suitable for clinical applications.It is feasible for the aperture shape optimization involving the proposed method.展开更多
Directed energy deposition-arc(DED-Arc)technology has the advantages of simple equipment,low manufacturing cost and high deposition rate,while the use of DED-Arc has problems of microstructure inhomogeneity,position d...Directed energy deposition-arc(DED-Arc)technology has the advantages of simple equipment,low manufacturing cost and high deposition rate,while the use of DED-Arc has problems of microstructure inhomogeneity,position dependence of macroscopic mechanical properties and anisotropy.Therefore,it is necessary to carry out a subsequent heat treatment to improve its microstructure uniformity,mechanical properties and superelasticity.In this investigation,the DED-Arc 15-layer NiTi alloy thin-walled parts with the solution treatment at different process parameters were studied to analyze the effects of solution heat treatment on microstructure,phase composition,phase transformation,microhardness,tensile and superelasticity.The temperature range of solution treatment is 800-1050℃,and the treatment time range is 1-5.5 h.The results show that after solution treatment at 800℃/1 h,the content of precipitated phase decreases,the grain is refined,the microhardness increases,and the mechanical properties in the 0°direction are improved.The strain recovery rate after 10 tensile cycles has increased from 37.13%(as-built)to 49.25%(solid solution treatment).This research provides an effective post treatment method for high-performance DED-Arc NiTi shape memory alloys.展开更多
文摘We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA).
基金supported by the National Natural Science Foundation of China(Grant No.41276181)
文摘Assuming spheroidal and spherical particle shapes for mineral dust aerosols,the effect of particle shape on dust aerosol optical depth retrievals,and subsequently on instantaneous shortwave direct radiative forcing(SWDRF) at the top of the atmosphere(TOA),is assessed based on Moderate Resolution Imaging Spectroradiometer(MODIS) data for a case study.Specifically,a simplified aerosol retrieval algorithm based on the principle of the Deep Blue aerosol retrieval method is employed to retrieve dust aerosol optical depths,and the Fu–Liou radiative transfer model is used to derive the instantaneous SWDRF of dust at the TOA for cloud-free conditions.Without considering the effect of particle shape on dust aerosol optical depth retrievals,the effect of particle shape on the scattering properties of dust aerosols(e.g.,extinction efficiency,single scattering albedo and asymmetry factor) is negligible,which can lead to a relative difference of at most 5% for the SWDRF at the TOA.However,the effect of particle shape on the SWDRF cannot be neglected provided that the effect of particle shape on dust aerosol optical depth retrievals is also taken into account for SWDRF calculations.The corresponding results in an instantaneous case study show that the relative differences of the SWDRF at the TOA between spheroids and spheres depend critically on the scattering angles at which dust aerosol optical depths are retrieved,and can be up to 40% for low dust-loading conditions.
基金This project is supported by National Natural Science Foundation of China (No.59235101).
文摘In order to decrease the anisotropy of mechanical properties, the rigid-plastic mechanical model for the forging method with horizontal V-shaped anvil is presented. The forging method, through the change of anvils shape, is able to control fibrous tissue direction, to improve the anisotropy of mechanical properties of axial forgings, to realize uniform forging. Therefore, the forging method can overcome the defect that conventional forging methods produce. The mechanism of the forging method with horizontal V-shaped anvil and the process of metal deformation are analyzed. The agreement of theoretical analysis with experimental study verifies the fact that the forging method with horizontal V-shaped anvil can control effectively the mechanical properties of axial forgings.
文摘Based on the action mechanism of linear shaped charge( LSC ), penetration performance of LSC on rock was studied. The optimal standoff and the vertex angle of LSC were studied and determined by lab experiments. Through cutting sand-cement grout samples, the spacing interval of boreholes can approach 17.5 times of the bore-hole' s diameter, and the result of the directional expansion of crack is satisfactory. The result of field experiment indicates cutting effect is very good, the ruggedness in fracture plane is less than 50 mm, the rate of half-hole marks is nearly 100 % , and the crack inspection shows that there is no damage in the internal of the cutting part. All these suggest that the orientation fracture blasting with LSC is a good means in directional fracture controlled blasting and is worth popularizing widely.
基金the financial support of the Hunan Innovation Platform and Talent Plan(2022RC3033)Natural Science Foundation of Shandong Province(ZR2020ZD04)Ganzhou Science and Technology Planning Project(Grant No.Ganshikefa[2019]60)。
文摘Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi.
基金supported by the Natural Science Foundation of Shanxi Province(No.20210302124403)the Research Project Supported by Shanxi Scholarship Council of China(No.2021-111)the Science and Technology Innovation Project of Colleges and Universities in Shanxi Province(No.2022L353).
文摘The gradient element of the aperture gradient map is utilized directly to generate the aperture shape without modulation.This process can be likened to choosing the direction of negative gradient descent for the generic aperture shape optimiza-tion.The negative gradient descent direction is more suitable under local conditions and has a slow convergence rate.To overcome these limitations,this study introduced conjugate gradients into aperture shape optimization based on gradient modulation.First,the aperture gradient map of the current beam was obtained for the proposed aperture shape optimiza-tion method,and the gradients of the aperture gradient map were modulated using conjugate gradients to form a modulated gradient map.The aperture shape was generated based on the modulated gradient map.The proposed optimization method does not change the optimal solution of the original optimization problem,but changes the iterative search direction when generating the aperture shape.The performance of the proposed method was verified using cases of head and neck cancer,and prostate cancer.The optimization results indicate that the proposed optimization method better protects the organs at risk and rapidly reduces the objective function value by ensuring a similar dose distribution to the planning target volume.Compared to the contrasting methods,the normal tissue complication probability obtained by the proposed optimization method decreased by up to 4.61%,and the optimization time of the proposed method decreased by 5.26%on average for ten cancer cases.The effectiveness and acceleration of the proposed method were verified through comparative experiments.According to the comparative experiments,the results indicate that the proposed optimization method is more suitable for clinical applications.It is feasible for the aperture shape optimization involving the proposed method.
基金The study was supported by the National Natural Science Foundation of China(No.52105396).The authors thank the State Key Laboratory of Materials Processing and Die&Mould Technology,and the Analytical&Testing Center,Huazhong University of Science&Technology for the extensive experiments.
文摘Directed energy deposition-arc(DED-Arc)technology has the advantages of simple equipment,low manufacturing cost and high deposition rate,while the use of DED-Arc has problems of microstructure inhomogeneity,position dependence of macroscopic mechanical properties and anisotropy.Therefore,it is necessary to carry out a subsequent heat treatment to improve its microstructure uniformity,mechanical properties and superelasticity.In this investigation,the DED-Arc 15-layer NiTi alloy thin-walled parts with the solution treatment at different process parameters were studied to analyze the effects of solution heat treatment on microstructure,phase composition,phase transformation,microhardness,tensile and superelasticity.The temperature range of solution treatment is 800-1050℃,and the treatment time range is 1-5.5 h.The results show that after solution treatment at 800℃/1 h,the content of precipitated phase decreases,the grain is refined,the microhardness increases,and the mechanical properties in the 0°direction are improved.The strain recovery rate after 10 tensile cycles has increased from 37.13%(as-built)to 49.25%(solid solution treatment).This research provides an effective post treatment method for high-performance DED-Arc NiTi shape memory alloys.