Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental,medical,and...Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental,medical,and energy applications.Recently,the construction of a step-scheme heterostructure system(hereafter called the S-scheme)has received widespread attention in the photocatalytic field due to its ability to achieve efficient photogenerated carrier separation and obtain strong photo-redox ability.Herein,a novel S-scheme heterojunction system consisting of 2D O-doped g-C_(3)N_(4)(OCN)nanosheets and 3D N-doped Nb_(2)O_(5)/C(N-NBO/C)nanoflowers is constructed via ultrasonication and vigorous agitation technique followed by heat treatment for the photocatalytic degradation of Rhodamine B(RhB).Detailed characterization and decomposition behaviour of RhB showed that the fabricated material shows excellent photocatalytic efficiency and stability towards RhB photodegradation under visible-light illumination.The enhanced performance could be attributed to the following factors:fast charge transfer,highly-efficient charge separation,extended lifetime of photoinduced charge carriers,and the high redox capability of the photoinduced charges in the S-scheme system.Various trapping experiment conditions and electron paramagnetic resonance provide clear evidence of the S-scheme photogenerated charge transfer path,meanwhile,the RhB mineralization degradation pathway was also investigated using LC-MS.This study presents an approach to constructing Nb_(2)O_(5)-based S-scheme heterojunctions for photocatalytic applications.展开更多
To evaluate the security of cipher algo- rithrrs with secret operations, we built a new reverse engineering analysis based on Differential Fault Analysis (DFA) to recover the secret S-boxes in Secret Private Network...To evaluate the security of cipher algo- rithrrs with secret operations, we built a new reverse engineering analysis based on Differential Fault Analysis (DFA) to recover the secret S-boxes in Secret Private Network (SPN) and Feistel structures, which are two of the most typical structures in block ciphers. This paper gives the general definitions of these two structures and proposes the reverse engineering analysis of each structure. Furthermore, we evaluate the complexity of the proposed reverse analyses and theoretically prove the effectiveness of the reverse method. For the Twoflsh-like and AES-like algorithrm, the experimental results verify the correctness and efficiency of the reverse analysis. The proposed reverse analysis can efficiently recover the secret S-boxes in the encryp'don algorithms writh SPN and Feistel structures. It can successfully recover the Twoflsh- like algorithm in 2.3 s with 256 faults and the AES- like algorithm in 0.33 s with 23 faults.展开更多
This paper proposes a compact polarization microstrip antenna based on double-layer structure. The band- width of the whole antenna is widened by expanding the top and bottom layers respectively. After the design of a...This paper proposes a compact polarization microstrip antenna based on double-layer structure. The band- width of the whole antenna is widened by expanding the top and bottom layers respectively. After the design of antenna structure and adjustment of size, the proposed antenna can achieve both the left- and right-hand circular polariza- tions in 2.33 GHz--2.97 GHz. Measurement results indicate that the effective bandwidth is 640 MHz in S-band and the relative bandwidth can achieve 24% with S, less than- 15 dB.展开更多
The S wave velocity structure between the hypocenter of C060394F earthquake,South Java and a series of observatory stations located in Australia and South-East Asia have been investigated through seismogram analysis i...The S wave velocity structure between the hypocenter of C060394F earthquake,South Java and a series of observatory stations located in Australia and South-East Asia have been investigated through seismogram analysis in the time domain and the three Cartesian components.The synthetic seismogram is constructed from the PREMAN global earth model.Seismogram comparison between the measured and synthetic seismograms shows large discrepancies.A correction to the S wave velocity structure is needed to solve these discrepancies.Seismogram analysis and fitting at the observatory stations located in Australia show a positive anomaly,whereas the stations in South-East Asia show a strong negative anomaly.Vertical anisotropy occurred in the upper mantle layer and earth mantle layers beneath it.The seismogram analysis in the time domain and the three components simultaneously provides a better picture of the earth model,compared to the analysis of the seismogram with arrival time,travel time difference and dispersion analysis.展开更多
This paper first describes the importance of using location specific S-N curves for fatigue damage assessment of existing steel structures. It discusses the existing concepts and methods for developing S-N curves usin...This paper first describes the importance of using location specific S-N curves for fatigue damage assessment of existing steel structures. It discusses the existing concepts and methods for developing S-N curves using empirical formulae and monotonic strength parameters, such as the ultimate tensile strength and hardness. It also discusses relationships among these monotonic parameters. Then it presents formulae for developing hardness-based full range S-N curves for medium strength steels. The formulae are verified using experimental data obtained from both monotonic and cyclic testing. Finally, it describes the advantages of these hardness-based formulae for developing location specific S-N curves as hardness testing is a non-destructive test which can be carried out on specific locations in structures.展开更多
The title complex, mercury bridged biferrocene trinuclear complex Hg(FcL)2. Bis (S-methyl-N- (1-ferrocenyl-1-methyl) methylenedithiocarbazate) mercury,Crystallizes in space group Pbca with a =19. 510 (4), b=19. 921 (5...The title complex, mercury bridged biferrocene trinuclear complex Hg(FcL)2. Bis (S-methyl-N- (1-ferrocenyl-1-methyl) methylenedithiocarbazate) mercury,Crystallizes in space group Pbca with a =19. 510 (4), b=19. 921 (5), c=15. 581 (3)A. V=6095(3) A, Z=8,M.=863. 12, Dc=1.881 g/cm3; u=19. 24 cm-1 and F(000) = 3376. The final refinement of 2455 observed reflections is converged with R= 0. 043 and Rw=0.047. X-ray crystal structure analysis revealed that the coordinationgeometry of Hg atom is a distorted tetrahedron with two Hg-N bonds and two Hg- S bonds. The Schiff-base ligand loses a proton from its tautomeric thiol form and is cryordianted to the Hg aotm uia the mercapto sulphur and the β-nitrogen atoms.展开更多
In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, an...In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, and a new method of eight specific steps is proposed to establish object oriented system structure of DSS by using the method of O S chart, which is applied successfully to the development of the DSS for the energy system ecology engineering research of the Wangheqiu country. Supplying many scientific effective computing models, decision support ways and a lot of accurate reliable decision data, the DSS plays a critical part in helping engineering researchers to make correct decisions. Because the period for developing the DSS is relatively shorter, the new way improves the efficiency of establishing DSS greatly. It also makes the DSS of system structure more flexible and easy to expand.展开更多
Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme hetero...Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.展开更多
According to the necessity of flexible workflow management system, the solution to set up the visualized workflow modelling system based on B/S structure is put forward, which conforms to the relevant specifications o...According to the necessity of flexible workflow management system, the solution to set up the visualized workflow modelling system based on B/S structure is put forward, which conforms to the relevant specifications of WfMC and the workflow process definition meta-model. The design for system structure is presented in detail, and the key technologies for system implementation are also introduced. Additionally, an example is illustrated to demonstrate the validity of system.展开更多
Large-scale gypsum rocks associated with world-class Pb-Zn ore formations are widely distributed in the Lanping Basin,Sowthwest China.Geochemical studies alongside field investigations were conducted in this study to ...Large-scale gypsum rocks associated with world-class Pb-Zn ore formations are widely distributed in the Lanping Basin,Sowthwest China.Geochemical studies alongside field investigations were conducted in this study to determine the source and evolutionary processes of the gypsum rocks in this area.The gypsum sequences in the Lanping Basin developed in two formations:the Triassic Sanhedong Formation and the Paleogene Yunlong Formation.The gypsum hosted in the former displays a primary thick-banded structure withδ34SV-CDT values in the range of 14.5‰−14.8‰.Combined with the 87Sr/86Sr values(0.707737−0.707783)of limestone,it can be suggested that the Sanhedong Formation is of marine origin.In contrast,the gypsum from the Paleogene Yunlong Formation is characterized by the dome,bead and diapiric salt structures,wider range of both 87Sr/86Sr(0.707695−0.708629)andδ34SV-CDT values(9.6‰−17‰),thus indicating a marine source but with the input of continental materials.The initial layered salt formations were formed by chemical deposition in a basin and were later intensely deformed by collisional orogeny during the Himalaya period.As a result,variable salt structures were formed.We hereby propose an evolutionary model to elucidate the genesis of the gypsum formations in the Lanping Basin.展开更多
文摘Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental,medical,and energy applications.Recently,the construction of a step-scheme heterostructure system(hereafter called the S-scheme)has received widespread attention in the photocatalytic field due to its ability to achieve efficient photogenerated carrier separation and obtain strong photo-redox ability.Herein,a novel S-scheme heterojunction system consisting of 2D O-doped g-C_(3)N_(4)(OCN)nanosheets and 3D N-doped Nb_(2)O_(5)/C(N-NBO/C)nanoflowers is constructed via ultrasonication and vigorous agitation technique followed by heat treatment for the photocatalytic degradation of Rhodamine B(RhB).Detailed characterization and decomposition behaviour of RhB showed that the fabricated material shows excellent photocatalytic efficiency and stability towards RhB photodegradation under visible-light illumination.The enhanced performance could be attributed to the following factors:fast charge transfer,highly-efficient charge separation,extended lifetime of photoinduced charge carriers,and the high redox capability of the photoinduced charges in the S-scheme system.Various trapping experiment conditions and electron paramagnetic resonance provide clear evidence of the S-scheme photogenerated charge transfer path,meanwhile,the RhB mineralization degradation pathway was also investigated using LC-MS.This study presents an approach to constructing Nb_(2)O_(5)-based S-scheme heterojunctions for photocatalytic applications.
基金This work was supported by the National Natural Science Foundation of China under Cxants No.60970116, No. 60970115, No. 61202386, No. 61003267.
文摘To evaluate the security of cipher algo- rithrrs with secret operations, we built a new reverse engineering analysis based on Differential Fault Analysis (DFA) to recover the secret S-boxes in Secret Private Network (SPN) and Feistel structures, which are two of the most typical structures in block ciphers. This paper gives the general definitions of these two structures and proposes the reverse engineering analysis of each structure. Furthermore, we evaluate the complexity of the proposed reverse analyses and theoretically prove the effectiveness of the reverse method. For the Twoflsh-like and AES-like algorithrm, the experimental results verify the correctness and efficiency of the reverse analysis. The proposed reverse analysis can efficiently recover the secret S-boxes in the encryp'don algorithms writh SPN and Feistel structures. It can successfully recover the Twoflsh- like algorithm in 2.3 s with 256 faults and the AES- like algorithm in 0.33 s with 23 faults.
基金Supported by National Basic Research Program of China ("973" Program,No.2007CB310605)
文摘This paper proposes a compact polarization microstrip antenna based on double-layer structure. The band- width of the whole antenna is widened by expanding the top and bottom layers respectively. After the design of antenna structure and adjustment of size, the proposed antenna can achieve both the left- and right-hand circular polariza- tions in 2.33 GHz--2.97 GHz. Measurement results indicate that the effective bandwidth is 640 MHz in S-band and the relative bandwidth can achieve 24% with S, less than- 15 dB.
文摘The S wave velocity structure between the hypocenter of C060394F earthquake,South Java and a series of observatory stations located in Australia and South-East Asia have been investigated through seismogram analysis in the time domain and the three Cartesian components.The synthetic seismogram is constructed from the PREMAN global earth model.Seismogram comparison between the measured and synthetic seismograms shows large discrepancies.A correction to the S wave velocity structure is needed to solve these discrepancies.Seismogram analysis and fitting at the observatory stations located in Australia show a positive anomaly,whereas the stations in South-East Asia show a strong negative anomaly.Vertical anisotropy occurred in the upper mantle layer and earth mantle layers beneath it.The seismogram analysis in the time domain and the three components simultaneously provides a better picture of the earth model,compared to the analysis of the seismogram with arrival time,travel time difference and dispersion analysis.
文摘This paper first describes the importance of using location specific S-N curves for fatigue damage assessment of existing steel structures. It discusses the existing concepts and methods for developing S-N curves using empirical formulae and monotonic strength parameters, such as the ultimate tensile strength and hardness. It also discusses relationships among these monotonic parameters. Then it presents formulae for developing hardness-based full range S-N curves for medium strength steels. The formulae are verified using experimental data obtained from both monotonic and cyclic testing. Finally, it describes the advantages of these hardness-based formulae for developing location specific S-N curves as hardness testing is a non-destructive test which can be carried out on specific locations in structures.
文摘The title complex, mercury bridged biferrocene trinuclear complex Hg(FcL)2. Bis (S-methyl-N- (1-ferrocenyl-1-methyl) methylenedithiocarbazate) mercury,Crystallizes in space group Pbca with a =19. 510 (4), b=19. 921 (5), c=15. 581 (3)A. V=6095(3) A, Z=8,M.=863. 12, Dc=1.881 g/cm3; u=19. 24 cm-1 and F(000) = 3376. The final refinement of 2455 observed reflections is converged with R= 0. 043 and Rw=0.047. X-ray crystal structure analysis revealed that the coordinationgeometry of Hg atom is a distorted tetrahedron with two Hg-N bonds and two Hg- S bonds. The Schiff-base ligand loses a proton from its tautomeric thiol form and is cryordianted to the Hg aotm uia the mercapto sulphur and the β-nitrogen atoms.
文摘In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, and a new method of eight specific steps is proposed to establish object oriented system structure of DSS by using the method of O S chart, which is applied successfully to the development of the DSS for the energy system ecology engineering research of the Wangheqiu country. Supplying many scientific effective computing models, decision support ways and a lot of accurate reliable decision data, the DSS plays a critical part in helping engineering researchers to make correct decisions. Because the period for developing the DSS is relatively shorter, the new way improves the efficiency of establishing DSS greatly. It also makes the DSS of system structure more flexible and easy to expand.
文摘Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.
基金Shanghai Municipal Science Committee key project(061612058,06JC14066,06DZ12001,061111006)Nationalscience and technology supporting project(2006BAF01A46)
文摘According to the necessity of flexible workflow management system, the solution to set up the visualized workflow modelling system based on B/S structure is put forward, which conforms to the relevant specifications of WfMC and the workflow process definition meta-model. The design for system structure is presented in detail, and the key technologies for system implementation are also introduced. Additionally, an example is illustrated to demonstrate the validity of system.
基金Project(41362008)supported by the National Natural Science Foundation of China。
文摘Large-scale gypsum rocks associated with world-class Pb-Zn ore formations are widely distributed in the Lanping Basin,Sowthwest China.Geochemical studies alongside field investigations were conducted in this study to determine the source and evolutionary processes of the gypsum rocks in this area.The gypsum sequences in the Lanping Basin developed in two formations:the Triassic Sanhedong Formation and the Paleogene Yunlong Formation.The gypsum hosted in the former displays a primary thick-banded structure withδ34SV-CDT values in the range of 14.5‰−14.8‰.Combined with the 87Sr/86Sr values(0.707737−0.707783)of limestone,it can be suggested that the Sanhedong Formation is of marine origin.In contrast,the gypsum from the Paleogene Yunlong Formation is characterized by the dome,bead and diapiric salt structures,wider range of both 87Sr/86Sr(0.707695−0.708629)andδ34SV-CDT values(9.6‰−17‰),thus indicating a marine source but with the input of continental materials.The initial layered salt formations were formed by chemical deposition in a basin and were later intensely deformed by collisional orogeny during the Himalaya period.As a result,variable salt structures were formed.We hereby propose an evolutionary model to elucidate the genesis of the gypsum formations in the Lanping Basin.