A single CMOS image sensor based on a 0.35μm process along with its design and implementation is introduced. The architecture of an active pixel sensor is used in the chip. The fill factor of a pixel cell can reach 4...A single CMOS image sensor based on a 0.35μm process along with its design and implementation is introduced. The architecture of an active pixel sensor is used in the chip. The fill factor of a pixel cell can reach 43%,higher than the traditional factor of 30%. Moreover, compared with the conventional method whose fixed pattern noise (FPN) is around 0.5%, a dynamic digital double sampling technique is developed, which possesses simpler circuit architecture and a better FPN suppression outcome. The CMOS image sensor chip is implemented in the 0.35μm mixed signal process of a Chartered by MPW. The experimental results show that the chip operates welt,with an FPN of about 0.17%.展开更多
The quality of dark output images from the CMOS (complementarymetal oxide semiconductor) black and white (B & W) digital imagesensors captured before and after γ-ray irradiation was studied. Thecharacteristic par...The quality of dark output images from the CMOS (complementarymetal oxide semiconductor) black and white (B & W) digital imagesensors captured before and after γ-ray irradiation was studied. Thecharacteristic parameters of the dark output images captured atdifferent radiation dose, e.g. average brightness and itsnon-uniformity of dark out- put images, were analyzed by our testsoftware. The primary explanation for the change of the parameterswith the radi- ation dose was given.展开更多
A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with saw...A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with sawtooth wave voltage generated by digital clock to interrogate FBG sensors. Using the analogue digital converter (ADC), the reflected FBG signals were sampled with synchronous digital clock. With the aid of digital matched filtering technique, the sampled FBG signals were processed to obtain the maximum signal-to-noise ratio (SNR) and the Bragg wavelength shift from the FBG signals was recovered. The results demonstrate that this system has a scanning range of 1 520 nm-1 575 nm,and the wavelength detection accuracy is less than 2 pm with 1.5 Hz scanning frequency.展开更多
Stringent attitude determination accuracy is required for the development of the advanced space technologies and thus the accuracy improvement of digital sun sensors is necessary.In this paper,we presented a proposal ...Stringent attitude determination accuracy is required for the development of the advanced space technologies and thus the accuracy improvement of digital sun sensors is necessary.In this paper,we presented a proposal for measurement error analysis of a digital sun sensor.A system modeling including three different error sources was built and employed for system error analysis.Numerical simulations were also conducted to study the measurement error introduced by different sources of error.Based on our model and study,the system errors from different error sources are coupled and the system calibration should be elaborately designed to realize a digital sun sensor with extra-high accuracy.展开更多
A 320×240 CMOS image sensor is demonstrated,which is implemented by a standard 0.6 μm 2P2M CMOS process.For reducing the chip area,each 2×2-pixel block shares a sample/hold circuit,analog-to-digital convert...A 320×240 CMOS image sensor is demonstrated,which is implemented by a standard 0.6 μm 2P2M CMOS process.For reducing the chip area,each 2×2-pixel block shares a sample/hold circuit,analog-to-digital converter and 1-b memory.The 2×2 pixel pitch has an area of 40 μm×40 μm and the fill factor is about 16%.While operating at a low frame rate,the sensor dissipates a very low power by power-management circuit making pixel-level comparators in an idle state.A digital correlated double sampling,which eliminates fixed pattern noise,improves SNR of the sensor, and multiple sampling operations make the sensor have a wide dynamic range.展开更多
Wearable strain sensors have attracted research interest owing to their poten-tial within digital healthcare,offering smarter tracking,efficient diagnostics,and lower costs.Unlike rigid sensors,fiber-based ones compet...Wearable strain sensors have attracted research interest owing to their poten-tial within digital healthcare,offering smarter tracking,efficient diagnostics,and lower costs.Unlike rigid sensors,fiber-based ones compete with their flexibility,durability,adaptability to body structures as well as eco-friendliness to envi-ronment.Here,the sustainable fiber-based wearable strain sensors for digital health are reviewed,and material,fabrication,and practical healthcare aspects are explored.Typical strain sensors predicated on various sensing modalities,be it resistive,capacitive,piezoelectric,or triboelectric,are explained and analyzed according to their strengths and weaknesses toward fabrication and applica-tions.The applications in digital healthcare spanning from body area sensing networks,intelligent health management,and medical rehabilitation to mul-tifunctional healthcare systems are also evaluated.Moreover,to create a more complete digital health network,wired and wireless methods of data collec-tion and examples of machine learning are elaborated in detail.Finally,the prevailing challenges and prospective insights into the advancement of novel fibers,enhancement of sensing precision and wearability,and the establishment of seamlessly integrated systems are critically summarized and offered.This endeavor not only encapsulates the present landscape but also lays the founda-tion for future breakthroughs in fiber-based wearable strain sensor technology within the domain of digital health.展开更多
Optical fiber acceleration seismometer as an important instrument can offer high sensitivity, anti-jamming and non-touched advantage which has an extensive application field. Its signal processing ability will decide ...Optical fiber acceleration seismometer as an important instrument can offer high sensitivity, anti-jamming and non-touched advantage which has an extensive application field. Its signal processing ability will decide whole system’s performance to some extent because it will affect directly the factors such as resolving power, precision and dynamic range. The signal processing is usually realized by analog circuits which was more inferior in stability, flexibility and anti-jamming to digital processing system. A digital processing system of optical fiber acceleration seismometer has been designed based on the embedded system design scheme. Synthetic-heterodyne demodulation has been studied, and signal processing has been realized. The double processors of ARM and DSP are employed to implement respectively the system control and signal processing, and to provide the output interfaces such as LCD, DAC and Ethernet interface. This system can vary with the measured signal in real time and linearly, and its work frequency bandwidth is between 10Hz and 1kHz. The system has better anti-jamming ability and can work normally when the SNR is 40dB.展开更多
Developments in new-generation information technology have enabled Digital Twins to reshape the physical world into a virtual digital space and provide technical support for constructing the Metaverse.Metaverse object...Developments in new-generation information technology have enabled Digital Twins to reshape the physical world into a virtual digital space and provide technical support for constructing the Metaverse.Metaverse objects can be at the micro-,meso-,or macroscale.The Metaverse is a complex collection of solid,liquid,gaseous,plasma,and other uncertain states.Additionally,the Metaverse integrates tangibles with social relations,such as interpersonal(friends,partners,and family)and social relations(ethics,morality,and law).This review introduces some principles and laws,such as broken windows theory,small-world phenomenon,survivor bias,and herd behavior,for constructing a Digital Twins model for social relations.Therefore,from multiple perspectives,this article reviews mappings of tangible and intangible real-world objects to the Metaverse using the Digital Twins model.展开更多
With the extension of the application domains for laser imaging radar, it is necessary to find a new technical way to obtain high technical performance and adaptive ability. In this paper, A new concept of digital rec...With the extension of the application domains for laser imaging radar, it is necessary to find a new technical way to obtain high technical performance and adaptive ability. In this paper, A new concept of digital receiver of laser imaging radar system is presented. This digital receiver is defined as a time varying parameter receiver which possesses large dynamics region and time domain filter. The receiver’s mode, component structure as well as every function of its processing are described. The results and laboratorial data show the feasibility of digital reception. Also, it can exploit the inherent nature of laser imaging radar to obtain high probability of detection.展开更多
In this paper,a new direct optical triangulation(DOT) for measuring theout-of-plane displacement is given.In order to state its principle,DOT is used to measure a micro-displacement of a rigid body,and at the same tim...In this paper,a new direct optical triangulation(DOT) for measuring theout-of-plane displacement is given.In order to state its principle,DOT is used to measure a micro-displacement of a rigid body,and at the same time,the method of digital image processing is also given.展开更多
Bio-sensor arrays for multi-channel recording have been developed recently and signal processing platforms for those signals have been studied actively.But it’s thereal situation which these technologies are generall...Bio-sensor arrays for multi-channel recording have been developed recently and signal processing platforms for those signals have been studied actively.But it’s thereal situation which these technologies are generally developed and studied respectively.So the interface design between recording array and signal processing platform is also an important issue to make bio-sensor signal processing system.In this paper,we proposed interface which has unique protocols to control sensor array and operate platform.There are two types of protocols in the interface.One is between sensor array and MCU in platform and the other is between MCU and board for wireless communication.Basically,each protocol has two kinds of modes(single,frame)and it can be extended if needed.展开更多
文摘A single CMOS image sensor based on a 0.35μm process along with its design and implementation is introduced. The architecture of an active pixel sensor is used in the chip. The fill factor of a pixel cell can reach 43%,higher than the traditional factor of 30%. Moreover, compared with the conventional method whose fixed pattern noise (FPN) is around 0.5%, a dynamic digital double sampling technique is developed, which possesses simpler circuit architecture and a better FPN suppression outcome. The CMOS image sensor chip is implemented in the 0.35μm mixed signal process of a Chartered by MPW. The experimental results show that the chip operates welt,with an FPN of about 0.17%.
基金the National Natural Science Foundation of China (No.10075029).
文摘The quality of dark output images from the CMOS (complementarymetal oxide semiconductor) black and white (B & W) digital imagesensors captured before and after γ-ray irradiation was studied. Thecharacteristic parameters of the dark output images captured atdifferent radiation dose, e.g. average brightness and itsnon-uniformity of dark out- put images, were analyzed by our testsoftware. The primary explanation for the change of the parameterswith the radi- ation dose was given.
基金Doctoral Foundation of Ministry of Education of China (No. 20040056008)
文摘A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with sawtooth wave voltage generated by digital clock to interrogate FBG sensors. Using the analogue digital converter (ADC), the reflected FBG signals were sampled with synchronous digital clock. With the aid of digital matched filtering technique, the sampled FBG signals were processed to obtain the maximum signal-to-noise ratio (SNR) and the Bragg wavelength shift from the FBG signals was recovered. The results demonstrate that this system has a scanning range of 1 520 nm-1 575 nm,and the wavelength detection accuracy is less than 2 pm with 1.5 Hz scanning frequency.
基金the financial support by the National 863 Project ( No. 2012AA121503 )the China NSF projects ( No. 61377012 , No. 61505094 )China Postdoctoral Science Foundation funded project ( 2015M571034 )
文摘Stringent attitude determination accuracy is required for the development of the advanced space technologies and thus the accuracy improvement of digital sun sensors is necessary.In this paper,we presented a proposal for measurement error analysis of a digital sun sensor.A system modeling including three different error sources was built and employed for system error analysis.Numerical simulations were also conducted to study the measurement error introduced by different sources of error.Based on our model and study,the system errors from different error sources are coupled and the system calibration should be elaborately designed to realize a digital sun sensor with extra-high accuracy.
文摘A 320×240 CMOS image sensor is demonstrated,which is implemented by a standard 0.6 μm 2P2M CMOS process.For reducing the chip area,each 2×2-pixel block shares a sample/hold circuit,analog-to-digital converter and 1-b memory.The 2×2 pixel pitch has an area of 40 μm×40 μm and the fill factor is about 16%.While operating at a low frame rate,the sensor dissipates a very low power by power-management circuit making pixel-level comparators in an idle state.A digital correlated double sampling,which eliminates fixed pattern noise,improves SNR of the sensor, and multiple sampling operations make the sensor have a wide dynamic range.
基金Hong Kong Polytechnic University,Grant/Award Number:1-WZ1YNational Natural Science Foundation of China,Grant/Award Number:82374295。
文摘Wearable strain sensors have attracted research interest owing to their poten-tial within digital healthcare,offering smarter tracking,efficient diagnostics,and lower costs.Unlike rigid sensors,fiber-based ones compete with their flexibility,durability,adaptability to body structures as well as eco-friendliness to envi-ronment.Here,the sustainable fiber-based wearable strain sensors for digital health are reviewed,and material,fabrication,and practical healthcare aspects are explored.Typical strain sensors predicated on various sensing modalities,be it resistive,capacitive,piezoelectric,or triboelectric,are explained and analyzed according to their strengths and weaknesses toward fabrication and applica-tions.The applications in digital healthcare spanning from body area sensing networks,intelligent health management,and medical rehabilitation to mul-tifunctional healthcare systems are also evaluated.Moreover,to create a more complete digital health network,wired and wireless methods of data collec-tion and examples of machine learning are elaborated in detail.Finally,the prevailing challenges and prospective insights into the advancement of novel fibers,enhancement of sensing precision and wearability,and the establishment of seamlessly integrated systems are critically summarized and offered.This endeavor not only encapsulates the present landscape but also lays the founda-tion for future breakthroughs in fiber-based wearable strain sensor technology within the domain of digital health.
文摘Optical fiber acceleration seismometer as an important instrument can offer high sensitivity, anti-jamming and non-touched advantage which has an extensive application field. Its signal processing ability will decide whole system’s performance to some extent because it will affect directly the factors such as resolving power, precision and dynamic range. The signal processing is usually realized by analog circuits which was more inferior in stability, flexibility and anti-jamming to digital processing system. A digital processing system of optical fiber acceleration seismometer has been designed based on the embedded system design scheme. Synthetic-heterodyne demodulation has been studied, and signal processing has been realized. The double processors of ARM and DSP are employed to implement respectively the system control and signal processing, and to provide the output interfaces such as LCD, DAC and Ethernet interface. This system can vary with the measured signal in real time and linearly, and its work frequency bandwidth is between 10Hz and 1kHz. The system has better anti-jamming ability and can work normally when the SNR is 40dB.
文摘Developments in new-generation information technology have enabled Digital Twins to reshape the physical world into a virtual digital space and provide technical support for constructing the Metaverse.Metaverse objects can be at the micro-,meso-,or macroscale.The Metaverse is a complex collection of solid,liquid,gaseous,plasma,and other uncertain states.Additionally,the Metaverse integrates tangibles with social relations,such as interpersonal(friends,partners,and family)and social relations(ethics,morality,and law).This review introduces some principles and laws,such as broken windows theory,small-world phenomenon,survivor bias,and herd behavior,for constructing a Digital Twins model for social relations.Therefore,from multiple perspectives,this article reviews mappings of tangible and intangible real-world objects to the Metaverse using the Digital Twins model.
文摘With the extension of the application domains for laser imaging radar, it is necessary to find a new technical way to obtain high technical performance and adaptive ability. In this paper, A new concept of digital receiver of laser imaging radar system is presented. This digital receiver is defined as a time varying parameter receiver which possesses large dynamics region and time domain filter. The receiver’s mode, component structure as well as every function of its processing are described. The results and laboratorial data show the feasibility of digital reception. Also, it can exploit the inherent nature of laser imaging radar to obtain high probability of detection.
文摘In this paper,a new direct optical triangulation(DOT) for measuring theout-of-plane displacement is given.In order to state its principle,DOT is used to measure a micro-displacement of a rigid body,and at the same time,the method of digital image processing is also given.
文摘Bio-sensor arrays for multi-channel recording have been developed recently and signal processing platforms for those signals have been studied actively.But it’s thereal situation which these technologies are generally developed and studied respectively.So the interface design between recording array and signal processing platform is also an important issue to make bio-sensor signal processing system.In this paper,we proposed interface which has unique protocols to control sensor array and operate platform.There are two types of protocols in the interface.One is between sensor array and MCU in platform and the other is between MCU and board for wireless communication.Basically,each protocol has two kinds of modes(single,frame)and it can be extended if needed.