Conventional land vertical seismic profiling (VSP) exploration usually uses P-wave sources and three-component geophones for receivers, emphasizing P- and converted S-waves. Previous studies show that both dynamite ...Conventional land vertical seismic profiling (VSP) exploration usually uses P-wave sources and three-component geophones for receivers, emphasizing P- and converted S-waves. Previous studies show that both dynamite borehole shots and vertical vibrations from controllable seismic sources at the surface will produce relatively strong pure P-waves and weaker pure S-waves. Interfaces with a large Poisson's ratio difference have a positive influence on the formation of strong transmitted converted S-waves. By a comparative analysis of pure S-waves from sources and converted downgoing S-waves, we believe that the main frequency of pure S-waves is usually lower than pure P-waves while the main frequency of downgoing converted S-waves is close to that of P-waves. We have studied zero-offset and offset VSP data from land P-wave sources. Results show that pure S-waves commonly exist in these data with differences in wave intensity. S-wave velocity can be obtained from the P-wave source zero-offset VSP data. Finally, we discuss the bright future of joint application of VSP P-and S-waves and the full use of S-waves in P-wave source VSP data.展开更多
At a sampling rate of 100 samples per second,the YRY-4 four-gauge borehole strainmeters(FGBS) are capable of recording transient strains caused by seismic waves such as P and S waves or strain seismograms. At such a...At a sampling rate of 100 samples per second,the YRY-4 four-gauge borehole strainmeters(FGBS) are capable of recording transient strains caused by seismic waves such as P and S waves or strain seismograms. At such a high sampling rate, data from the YRY-4 strainmeters demonstrate fairly satisfactory self-consistency. The strain tensor seismograms demonstrate the senses of motion of P waves, that is, the type of seismic wave travels in the direction of the maximum normal strain change. The observed strain patterns of S waves significantly differ from those of P waves and should contain information about the source mechanism. Spectrum analysis shows that the strain seismograms are consistent with conventional broadband seismograms from the same site.展开更多
The present paper contributes in studying the phase velocities of P- and S-waves in a half space subjected to a compressive initial stress and gravity field. The density and acceleration due to gravity vary quadratica...The present paper contributes in studying the phase velocities of P- and S-waves in a half space subjected to a compressive initial stress and gravity field. The density and acceleration due to gravity vary quadratically along the depth. The dispersion equation is derived in a closed form. It is shown that the phase velocities depend not only on the initial stress, gravity, and direction of propagation but also on the inhomogeneity parameter associated with the density and acceleration due to gravity. Various particular cases are obtained, and the results match with the classical results. Numerical investigations on the phase velocities of P- and S-waves against the wave number are made for various sets of values of the material parameters, and the results are illustrated graphically. The graphical user interface model is developed to generalize the effect.展开更多
An inversion method was applied to crustal earthquakes dataset to find S-wave attenuation characteristics beneath the Eastern Tohoku region of Japan. Accelerograms from 85 shallow crustal earthquakes up to 25 km depth...An inversion method was applied to crustal earthquakes dataset to find S-wave attenuation characteristics beneath the Eastern Tohoku region of Japan. Accelerograms from 85 shallow crustal earthquakes up to 25 km depth and magnitude range between 3.5 and 5.5 were analyzed to estimate the seismic quality factor Qs. A homogeneous attenuation model Qs for the wave propagation path was evaluated from spectral amplitudes, at 24 different frequencies between 0.5 and 20 Hz by using generalized inversion technique. To do this, non-parametric attenuation functions were calculated to observe spectral amplitude decay with hypocentral distance. Then, these functions were parameterized to estimate Qs. It was found that in Eastern Tohoku region, the Qs frequency dependence can be approximated with the function 33 f 1.22 within a frequency range between 0.5 and 20 Hz. However, the frequency dependence of Qs in the frequency range between 0.5 and 6 Hz is best approximated by Qs (f) = 36 f 0.94 showing relatively weaker frequency dependence as compared to the relation Qs (f) = 6 f^ 2.09 for the frequency range between 6 and 15 Hz. These results could be used to estimate source and site parameters for seismic hazard assessment in the region.展开更多
Ovaling deformation of circular tunnels has received great interest from the tunneling community because this mode of seismicinduced deformation is considered the most critical.However,there is growing evidence that o...Ovaling deformation of circular tunnels has received great interest from the tunneling community because this mode of seismicinduced deformation is considered the most critical.However,there is growing evidence that other deformation modes can also be important and thus need to be considered in design.This study presents a new analytical solution to estimate axial bending(snaking),a mode of deformation caused by S-waves impinging on a tunnel parallel to the tunnel axis.The solution is developed using the soilstructure interaction approach with the assumption that the interface between the ground and the tunnel lining is frictionless(fullslip).Full dynamic numerical simulations are conducted to verify the new full-slip solution,together with the existing no-slip solution.Effects of dynamic amplification are also explored for both full-slip and no-slip interface conditions by changing the wavelength(or frequency)of the seismic input motions.展开更多
To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a four...To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.展开更多
We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion ...We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion symmetry. We investigate how the shot noise properties vary as the relative amplitude between the two parity components in the pairing potential is changed. It is demonstrated that some characteristics of the electrical shot noise properties of such tunnel junctions may depend sensitively on the relative amplitude between the two parity components in the pairing potential, and some significant changes may occur in the electrical shot noise properties when the relative amplitude between the two parity components is varied from the singlet s-wave pairing dominated regime to the chiral triplet p-wave pairing dominated regime. In the chiral triplet p-wave pairing dominated regime, the ratio of noise power to electric current is close to 2e both in the in-gap and in the out-gap region. In the singlet s-wave pairing dominated regime, the value of this ratio is close to 4e in the inner gap region but may reduce to about 2e in the outer gap region as the relative amplitude of the chiral triplet pairing component is increased. The variations of the differential shot noise with the bias voltage also exhibit some significantly different features in different regimes. Such different features can serve as useful diagnostic tools for the determination of the relative magnitude of the two parity components in the pairing potential.展开更多
When inverting the S-wave velocity and azimuthal anisotropy from ambient noise data, it is always to obtain the partial overlapped inversion results in contiguous different regions. Merging different data to achieve a...When inverting the S-wave velocity and azimuthal anisotropy from ambient noise data, it is always to obtain the partial overlapped inversion results in contiguous different regions. Merging different data to achieve a consistent model becomes an essential requirement. Based on the S-wave velocity and azimuthal anisotropy obtained from different contiguous regions, this paper introduces three kinds of methods for merging data. For data from different regions with partial overlapping areas, the merged results could be calculated by direct average weighting(DAW), linear dynamic weighting(LDW), and Gaussian function weighting(GFW), respectively. Data tests demonstrate that the LDW and GFW methods can effectively merge data by reasonably allocating data weights to capitalize on the data quality advantages in each zone. In particular, they can resolve the data smoothness at the boundaries of data areas, resulting in a consistent data model in larger regions. This paper presents the effective methods and valuable experiences that can be referred to as advancing data merging technology.展开更多
A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical po...A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical porosity value and we can generally take only an empirical critical porosity value which often causes errors. In this paper, we propose a method to obtain the rock critical porosity value by inverting P-wave velocity and applying it to predict S-wave velocity. The applications of experiment and log data both show that the critical porosity inversion method can reduce the uncertainty resulting from using an empirical value in the past and provide the accurate critical porosity value for predicting S-wave velocity which significantly improves the prediction accuracy.展开更多
High-frequency S-wave seismogram envelopes of microearthquakes broaden with increasing travel distance,a phenomenon known as S-wave envelope broadening. Multiple forward scattering and diffraction for the random inhom...High-frequency S-wave seismogram envelopes of microearthquakes broaden with increasing travel distance,a phenomenon known as S-wave envelope broadening. Multiple forward scattering and diffraction for the random inhomogeneities along the seismic ray path are the main causes of S-wave envelope broadening,so the phenomenon of S-wave envelope broadening is used to study the inhomogeneity of the medium. The peak delay time of an S-wave,which is defined as the time lag from the direct S-wave onset to the maximum amplitude arrival of its envelope,is accepted to quantify S-wave envelope broadening. 204 small earthquake records in Changbaishan Tianchi volcano were analyzed by the S-wave envelope broadening algorithm. The results show that S-wave envelope broadening in the Changbaishan Tianchi volcano is obvious,and that the peak delay time of S-wave has a positive correlation with the hypocenter distance and frequency of the S-wave. The relationships between the S-wave peak delay time and the hypocenter distance for different frequency bands were obtained using the statistics method. The results are beneficial to the understanding of the S-wave envelope broadening phenomena and the quantitative research on the inhomogeneities of the crust medium in the Changbaishan Tianchi volcano region.展开更多
The shear-wave velocity is a very important parameter in oil and gas seismic exploration, and vital in prestack elastic-parameters inversion and seismic attribute analysis. However, sheafing-velocity logging is seldom...The shear-wave velocity is a very important parameter in oil and gas seismic exploration, and vital in prestack elastic-parameters inversion and seismic attribute analysis. However, sheafing-velocity logging is seldom carried out because it is expensive. This paper presents a simple method for predicting S-wave velocity which covers the basic factors that influence seismic wave propagation velocity in rocks. The elastic modulus of a rock is expressed here as a weighted arithmetic average between Voigt and Reuss bounds, where the weighting factor, w, is a measurement of the geometric details of the pore space and mineral grains. The S-wave velocity can be estimated from w, which is derived from the P-wave modulus. The method is applied to process well-logging data for a carbonate reservoir in Sichuan Basin, and shows the predicted S-wave velocities agree well with the measured S-wave velocities.展开更多
In this paper, we derive an approximation of the SS-wave reflection coefficient and the expression of S-wave ray elastic impedance (SREI) in terms of the ray parameter. The SREI can be expressed by the S-wave incide...In this paper, we derive an approximation of the SS-wave reflection coefficient and the expression of S-wave ray elastic impedance (SREI) in terms of the ray parameter. The SREI can be expressed by the S-wave incidence angle or P-wave reflection angle, referred to as SREIS and SREIP, respectively. Our study using elastic models derived from real log measurements shows that SREIP has better capability for lithology and fluid discrimination than SREIS and conventional S-wave elastic impedance (SEI). We evaluate the SREIP feasibility using 25 groups of samples from Castagna and Smith (1994). Each sample group is constructed by using shale, brine-sand, and gas-sand. Theoretical evaluation also indicates that SRE1P at large incident angles is more sensitive to fluid than conventional fluid indicators. Real seismic data application also shows that SRE1P at large angles calculated using P-wave and S-wave impedance can efficiently characterize tight gas-sand.展开更多
The northeastern margin of the South China Sea (SCS), developed from continental rifting and breakup, is usually thought of as a non-volcanic margin. However, post-spreading volcanism is massive and lower crustal high...The northeastern margin of the South China Sea (SCS), developed from continental rifting and breakup, is usually thought of as a non-volcanic margin. However, post-spreading volcanism is massive and lower crustal high-velocity anomalies are widespread, which complicate the nature of the margin here. To better understand crustal seismic velocities, lithology, and geophysical properties, we present an S-wave velocity (VS) model and a VP/VS model for the northeastern margin by using an existing P-wave velocity (VP) model as the starting model for 2-D kinematic S-wave forward ray tracing. The Mesozoic sedimentary sequence has lower VP/VS ratios than the Cenozoic sequence;in between is a main interface of P-S conversion. Two isolated high-velocity zones (HVZ) are found in the lower crust of the continental slope, showing S-wave velocities of 4.0–4.2 km/s and VP/VS ratios of 1.73–1.78. These values indicate a mafic composition, most likely of amphibolite facies. Also, a VP/VS versus VP plot indicates a magnesium-rich gabbro facies from post-spreading mantle melting at temperatures higher than normal. A third high-velocity zone (VP : 7.0–7.8 km/s;VP/VS: 1.85–1.96), 70-km wide and 4-km thick in the continent-ocean transition zone, is most likely to be a consequence of serpentinization of upwelled upper mantle. Seismic velocity structures and also gravity anomalies indicate that mantle upwelling/ serpentinization could be the most severe in the northeasternmost continent-ocean boundary of the SCS. Empirical relationships between seismic velocity and degree of serpentinization suggest that serpentinite content decreases with depth, from 43% in the lower crust to 37% into the mantle.展开更多
The shear wave(S-wave) component of the total blast vibration always plays an important role in damage to rock or adjacent structures.Numerical approach has been considered as an economical and effective tool in predi...The shear wave(S-wave) component of the total blast vibration always plays an important role in damage to rock or adjacent structures.Numerical approach has been considered as an economical and effective tool in predicting blast vibration.However,S-wave has not yet attracted enough attention in previous numerical simulations.In this paper,three typical numerical models,i.e.the continuum-based elastic model,the continuum-based damage model,and the coupled smooth particle hydrodynamics(SPH)-finite element method(FEM) model,were first introduced and developed to simulate the blasting of a single cylindrical charge.Then,the numerical results from different models were evaluated based on a review on the generation mechanisms of S-wave during blasting.Finally,some suggestions on the selection of numerical approaches for simulating generation of the blast-induced S-wave were put forward.Results indicate that different numerical models produce different results of S-wave.The coupled numerical model was the best,for its outstanding capacity in producing S-wave component.It is suggested that the model that can describe the cracking,sliding or heaving of rock mass,and the movement of fragments near the borehole should be selected preferentially,and priority should be given to the material constitutive law that could record the nonlinear mechanical behavior of rock mass near the borehole.展开更多
Microtremors array observation for estimating S-wave velocity structure from phase velocities of Rayleigh and Love wave on two practical sites in Tangshan area by a China-US joint group are researched.The phase veloci...Microtremors array observation for estimating S-wave velocity structure from phase velocities of Rayleigh and Love wave on two practical sites in Tangshan area by a China-US joint group are researched.The phase velocities of Rayleigh wave are estimated from vertical component records and those of Love wave are estimated from three-component records of microtremors array using modified spatial auto-correlation method.Haskell matrix method is used in calculating Rayleigh and Love wave phase velocities,and the shallow S-wave velocity structure of two practical sites are estimated by means of a hybrid approach of Genetic Algorithm and Simplex.The results are compared with the PS logging data of the two sites,showing it is feasible to estimate the shallow S-wave velocity structure of practical site from the observation of microtremor array.展开更多
Elastic reverse time migration(RTM)uses the elastic wave equation to extrapolate multicomponent seismic data to the subsurface and separate the elastic wavefield into P-and S-waves.P-and S-wave separation is a necessa...Elastic reverse time migration(RTM)uses the elastic wave equation to extrapolate multicomponent seismic data to the subsurface and separate the elastic wavefield into P-and S-waves.P-and S-wave separation is a necessary step in elastic RTM to avoid crosstalk between coupled wavefields.However,the current curl-divergence operator-based separation method has a polarity reversal problem in PS imaging,and vector separation methods often have separation artifacts at the interface,which affects the quality of the imaging stack.We propose a non-artifact P-and S-wave separation method based on the first-order velocity-strain equation.This equation is used for wavefield extrapolation and separation in the first-order staggered-grid finite-difference scheme,and the storage and calculation amounts are consistent with the classical first-order velocity-stress equation.The separation equation does not calculate the partial derivatives of the elastic parameters,and thus,there is no artifact in the separated Pand S-waves.During wavefield extrapolation,the dynamic characteristics of the reflected wave undergo some changes,but the transmitted wavefield is accurate;therefore,it does not affect the dynamic characteristics of the final migration imaging.Through numerical examples of 2 D simple models,part SEAM model,BP model,and 3 D 4-layer model,different wavefield separation methods and corresponding elastic RTM imaging results are analyzed.We found that the velocity-strain based elastic RTM can image subsurface structures well,without spike artifacts caused by separation artifacts,and without polarity reversal phenomenon of the PS imaging.展开更多
In this article, we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail. Similar to radial receiver functio...In this article, we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail. Similar to radial receiver function, SV-component receiver function can be obtained by directly deconvolving the P-component from the SV-component of teleseismic recordings. Our analyses indicate that the change of amplitude of SV-component receiver function against the change of epicentral distance is less than that of radial receiver function. Moreover, the waveform of SV-component receiver function is simpler than the radial receiver function and gives prominence to the PS converted phases that are the most sensitive to the shear wave velocity structure in the inversion. The synthetic tests show that the convergence of SV-component receiver function inversion is faster than that of the radial receiver function inversion. As an example, we investigate the S-wave velocity structure beneath HIA sta-tion by using the SV-component receiver function inversion method.展开更多
Estimation of S-wave velocity using logging data has mainly been performed for sandstone, mudstone and oil and gas strata, while its application to hydrate reservoirs has been largely overlooked. In this paper we pres...Estimation of S-wave velocity using logging data has mainly been performed for sandstone, mudstone and oil and gas strata, while its application to hydrate reservoirs has been largely overlooked. In this paper we present petxophysical methods to estimate the S-wave velocity of hydrate reservoirs with the P-wave velocity and the density as constraints. The three models used in this paper are an equivalent model (MBGL), a three-phase model (TPBE), and a thermo-elasticity model (TEM). The MBGL model can effectively describe the internal relationship among the components of the rock, and the estimated P-wave velocities are in good agreement with the measured data (2.8% error). However, in the TPBE model, the solid, liquid and gas phases axe considered to be independent of each other, and the estimation results are relatively low (46.6% error). The TEM model is based on the sensitivity of the gas hydrate to temperature and pressure, and the accuracy of the estimation results is also high (3.6% error). Before the estimation, the occurrence patterns of hydrates in the Shenhu area were examined, and occurrence state one (the hydrate is in solid form in the reservoir) was selected for analysis. By using the known P-wave velocity and density as constraints, a reasonable S-wave velocity value (ranging from 400 to 1100 m s 1 and for a hydrate layer of 1100 m s 1) can be obtained through multiple iterations. These methods and results provide new data and technical support for further research on hydrates and other geological features in the Shenhu area.展开更多
The Ningdu basin,located in southern Jiangxi province of southwest China,is one of the Mesozoic basin groups which has exploration prospects for geothermal energy.A study on the detailed velocity structure of the Ning...The Ningdu basin,located in southern Jiangxi province of southwest China,is one of the Mesozoic basin groups which has exploration prospects for geothermal energy.A study on the detailed velocity structure of the Ningdu basin can provide important information for geothermal resource exploration.In this study,we deployed a dense seismic array in the Ningdu basin to investigate the 3D velocity structure and discuss implications for geothermal exploration and geological evolution.Based on the dense seismic array including 35 short-period(5 s-100 Hz)seismometers with an average interstation distance of~5 km,Rayleigh surface wave dispersion curves were extracted from the continuous ambient noise data for surface wave tomographic inversion.Group velocity tomography was conducted and the 3D S-wave velocity structure was inverted by the neighborhood algorithm.The results revealed obvious low-velocity anomalies in the center of the basin,consistent with the low-velocity Cretaceous sedimentary rocks.The basement and basin-controlling fault can also be depicted by the S-wave velocity anomalies.The obvious seismic interface is about 2 km depth in the basin center and decreases to 700 m depth near the basin boundary,suggesting spatial thickness variations of the Cretaceous sediment.The fault features of the S-wave velocity profile coincide with the geological cognition of the western boundary basincontrolling fault,which may provide possible upwelling channels for geothermal fluid.This study suggests that seismic tomography with a dense array is an effective method and can play an important role in the detailed investigations of sedimentary basins.展开更多
By processing S-wave data from the Fanshi-Huai’an-Taipusiqi DSS profile,which is a three-component,wide-angle reflection/refraction profile,and in the light of the results from P-wave interpretation,two-dimensional(2...By processing S-wave data from the Fanshi-Huai’an-Taipusiqi DSS profile,which is a three-component,wide-angle reflection/refraction profile,and in the light of the results from P-wave interpretation,two-dimensional(2-D)structures of the crust and upper mantle are presented,including S-wave velocity Vs and the physical parameter of medium-Poisson’s ratio a.Taking other geological and geophysical information into account,and with reference to the results from petrophysical experiments at home and abroad,we carried out interpretation and inference with respect to deep crustal structure,tectonics,and lithologic characters.It has been concluded that in the upper and middle crust,a values are mostly not greater than 0.25,and rocks,which generally assume brittle,are mainly composed of granite; the rocks in the lower layer of the upper crust between Yangyuan-Huai’an containing inorganic CO2 itself releases carbon; for the rocks in the lower crust and crust-mantle transitional zone,which are comparatively展开更多
文摘Conventional land vertical seismic profiling (VSP) exploration usually uses P-wave sources and three-component geophones for receivers, emphasizing P- and converted S-waves. Previous studies show that both dynamite borehole shots and vertical vibrations from controllable seismic sources at the surface will produce relatively strong pure P-waves and weaker pure S-waves. Interfaces with a large Poisson's ratio difference have a positive influence on the formation of strong transmitted converted S-waves. By a comparative analysis of pure S-waves from sources and converted downgoing S-waves, we believe that the main frequency of pure S-waves is usually lower than pure P-waves while the main frequency of downgoing converted S-waves is close to that of P-waves. We have studied zero-offset and offset VSP data from land P-wave sources. Results show that pure S-waves commonly exist in these data with differences in wave intensity. S-wave velocity can be obtained from the P-wave source zero-offset VSP data. Finally, we discuss the bright future of joint application of VSP P-and S-waves and the full use of S-waves in P-wave source VSP data.
基金supported by the Special Fund for Earthquake Research in the Public Interest(No.201108009)
文摘At a sampling rate of 100 samples per second,the YRY-4 four-gauge borehole strainmeters(FGBS) are capable of recording transient strains caused by seismic waves such as P and S waves or strain seismograms. At such a high sampling rate, data from the YRY-4 strainmeters demonstrate fairly satisfactory self-consistency. The strain tensor seismograms demonstrate the senses of motion of P waves, that is, the type of seismic wave travels in the direction of the maximum normal strain change. The observed strain patterns of S waves significantly differ from those of P waves and should contain information about the source mechanism. Spectrum analysis shows that the strain seismograms are consistent with conventional broadband seismograms from the same site.
基金supported by the Research Fellow of Indian School of Mines in Dhanbad (No. 2010DR0016)
文摘The present paper contributes in studying the phase velocities of P- and S-waves in a half space subjected to a compressive initial stress and gravity field. The density and acceleration due to gravity vary quadratically along the depth. The dispersion equation is derived in a closed form. It is shown that the phase velocities depend not only on the initial stress, gravity, and direction of propagation but also on the inhomogeneity parameter associated with the density and acceleration due to gravity. Various particular cases are obtained, and the results match with the classical results. Numerical investigations on the phase velocities of P- and S-waves against the wave number are made for various sets of values of the material parameters, and the results are illustrated graphically. The graphical user interface model is developed to generalize the effect.
基金a part of author’s M.Sc Research under the project:‘‘Strengthening of Earthquake Engineering Center’’,funded by Higher Education Commission,Government of Pakistan
文摘An inversion method was applied to crustal earthquakes dataset to find S-wave attenuation characteristics beneath the Eastern Tohoku region of Japan. Accelerograms from 85 shallow crustal earthquakes up to 25 km depth and magnitude range between 3.5 and 5.5 were analyzed to estimate the seismic quality factor Qs. A homogeneous attenuation model Qs for the wave propagation path was evaluated from spectral amplitudes, at 24 different frequencies between 0.5 and 20 Hz by using generalized inversion technique. To do this, non-parametric attenuation functions were calculated to observe spectral amplitude decay with hypocentral distance. Then, these functions were parameterized to estimate Qs. It was found that in Eastern Tohoku region, the Qs frequency dependence can be approximated with the function 33 f 1.22 within a frequency range between 0.5 and 20 Hz. However, the frequency dependence of Qs in the frequency range between 0.5 and 6 Hz is best approximated by Qs (f) = 36 f 0.94 showing relatively weaker frequency dependence as compared to the relation Qs (f) = 6 f^ 2.09 for the frequency range between 6 and 15 Hz. These results could be used to estimate source and site parameters for seismic hazard assessment in the region.
文摘Ovaling deformation of circular tunnels has received great interest from the tunneling community because this mode of seismicinduced deformation is considered the most critical.However,there is growing evidence that other deformation modes can also be important and thus need to be considered in design.This study presents a new analytical solution to estimate axial bending(snaking),a mode of deformation caused by S-waves impinging on a tunnel parallel to the tunnel axis.The solution is developed using the soilstructure interaction approach with the assumption that the interface between the ground and the tunnel lining is frictionless(fullslip).Full dynamic numerical simulations are conducted to verify the new full-slip solution,together with the existing no-slip solution.Effects of dynamic amplification are also explored for both full-slip and no-slip interface conditions by changing the wavelength(or frequency)of the seismic input motions.
基金Supported by the CNPC Science and Technology Projects(2022-N/G-47808,2023-N/G-67014)RIPED International Cooperation Project(19HTY5000008).
文摘To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.
文摘We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion symmetry. We investigate how the shot noise properties vary as the relative amplitude between the two parity components in the pairing potential is changed. It is demonstrated that some characteristics of the electrical shot noise properties of such tunnel junctions may depend sensitively on the relative amplitude between the two parity components in the pairing potential, and some significant changes may occur in the electrical shot noise properties when the relative amplitude between the two parity components is varied from the singlet s-wave pairing dominated regime to the chiral triplet p-wave pairing dominated regime. In the chiral triplet p-wave pairing dominated regime, the ratio of noise power to electric current is close to 2e both in the in-gap and in the out-gap region. In the singlet s-wave pairing dominated regime, the value of this ratio is close to 4e in the inner gap region but may reduce to about 2e in the outer gap region as the relative amplitude of the chiral triplet pairing component is increased. The variations of the differential shot noise with the bias voltage also exhibit some significantly different features in different regimes. Such different features can serve as useful diagnostic tools for the determination of the relative magnitude of the two parity components in the pairing potential.
基金supported by the National Natural Science Foundation of China (Project 42330311)the Central Public-interest Scientific Institution Basal Research Fund (No. 2021IEF0103)the National Key R&D Project of China (2017YFC1500304)。
文摘When inverting the S-wave velocity and azimuthal anisotropy from ambient noise data, it is always to obtain the partial overlapped inversion results in contiguous different regions. Merging different data to achieve a consistent model becomes an essential requirement. Based on the S-wave velocity and azimuthal anisotropy obtained from different contiguous regions, this paper introduces three kinds of methods for merging data. For data from different regions with partial overlapping areas, the merged results could be calculated by direct average weighting(DAW), linear dynamic weighting(LDW), and Gaussian function weighting(GFW), respectively. Data tests demonstrate that the LDW and GFW methods can effectively merge data by reasonably allocating data weights to capitalize on the data quality advantages in each zone. In particular, they can resolve the data smoothness at the boundaries of data areas, resulting in a consistent data model in larger regions. This paper presents the effective methods and valuable experiences that can be referred to as advancing data merging technology.
基金sponsored by Important National Science and Technology Specifi c Projects of China (No.2011ZX05001)
文摘A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical porosity value and we can generally take only an empirical critical porosity value which often causes errors. In this paper, we propose a method to obtain the rock critical porosity value by inverting P-wave velocity and applying it to predict S-wave velocity. The applications of experiment and log data both show that the critical porosity inversion method can reduce the uncertainty resulting from using an empirical value in the past and provide the accurate critical porosity value for predicting S-wave velocity which significantly improves the prediction accuracy.
基金sponsored by the National Key Technology R&D Program (2006BAC01B04)the Joint Earthquake Science Foundation (A08026,A07138),China
文摘High-frequency S-wave seismogram envelopes of microearthquakes broaden with increasing travel distance,a phenomenon known as S-wave envelope broadening. Multiple forward scattering and diffraction for the random inhomogeneities along the seismic ray path are the main causes of S-wave envelope broadening,so the phenomenon of S-wave envelope broadening is used to study the inhomogeneity of the medium. The peak delay time of an S-wave,which is defined as the time lag from the direct S-wave onset to the maximum amplitude arrival of its envelope,is accepted to quantify S-wave envelope broadening. 204 small earthquake records in Changbaishan Tianchi volcano were analyzed by the S-wave envelope broadening algorithm. The results show that S-wave envelope broadening in the Changbaishan Tianchi volcano is obvious,and that the peak delay time of S-wave has a positive correlation with the hypocenter distance and frequency of the S-wave. The relationships between the S-wave peak delay time and the hypocenter distance for different frequency bands were obtained using the statistics method. The results are beneficial to the understanding of the S-wave envelope broadening phenomena and the quantitative research on the inhomogeneities of the crust medium in the Changbaishan Tianchi volcano region.
基金supported by the High-Tech Research and Development Program of China(Grant No.2008AA093001)China Petroleum & Chemical Corporation(Grant No.YPH08006)
文摘The shear-wave velocity is a very important parameter in oil and gas seismic exploration, and vital in prestack elastic-parameters inversion and seismic attribute analysis. However, sheafing-velocity logging is seldom carried out because it is expensive. This paper presents a simple method for predicting S-wave velocity which covers the basic factors that influence seismic wave propagation velocity in rocks. The elastic modulus of a rock is expressed here as a weighted arithmetic average between Voigt and Reuss bounds, where the weighting factor, w, is a measurement of the geometric details of the pore space and mineral grains. The S-wave velocity can be estimated from w, which is derived from the P-wave modulus. The method is applied to process well-logging data for a carbonate reservoir in Sichuan Basin, and shows the predicted S-wave velocities agree well with the measured S-wave velocities.
基金sponsored by National Natural Science Fund Projects (No.41204072 and No.U1262208)Research Funds Provided to New Recruitments of China University of Petroleum-Beijing (YJRC-2011-03)Science Foundation of China University of Petroleum-Beijing (YJRC-2013-36)
文摘In this paper, we derive an approximation of the SS-wave reflection coefficient and the expression of S-wave ray elastic impedance (SREI) in terms of the ray parameter. The SREI can be expressed by the S-wave incidence angle or P-wave reflection angle, referred to as SREIS and SREIP, respectively. Our study using elastic models derived from real log measurements shows that SREIP has better capability for lithology and fluid discrimination than SREIS and conventional S-wave elastic impedance (SEI). We evaluate the SREIP feasibility using 25 groups of samples from Castagna and Smith (1994). Each sample group is constructed by using shale, brine-sand, and gas-sand. Theoretical evaluation also indicates that SRE1P at large incident angles is more sensitive to fluid than conventional fluid indicators. Real seismic data application also shows that SRE1P at large angles calculated using P-wave and S-wave impedance can efficiently characterize tight gas-sand.
基金South China Sea Institute of Oceanology (SCSIO) for providing R/V Shiyan-2 to carry out this experiment,sponsored by Oceanographic Research Vessel Sharing Plan (NORC2016-08) of National Natural Science Foundation of Chinafunded by National Natural Science Foundation of China (Grant Nos. 41776057, 41761134051, 91858213, 41730532 and 91428039)
文摘The northeastern margin of the South China Sea (SCS), developed from continental rifting and breakup, is usually thought of as a non-volcanic margin. However, post-spreading volcanism is massive and lower crustal high-velocity anomalies are widespread, which complicate the nature of the margin here. To better understand crustal seismic velocities, lithology, and geophysical properties, we present an S-wave velocity (VS) model and a VP/VS model for the northeastern margin by using an existing P-wave velocity (VP) model as the starting model for 2-D kinematic S-wave forward ray tracing. The Mesozoic sedimentary sequence has lower VP/VS ratios than the Cenozoic sequence;in between is a main interface of P-S conversion. Two isolated high-velocity zones (HVZ) are found in the lower crust of the continental slope, showing S-wave velocities of 4.0–4.2 km/s and VP/VS ratios of 1.73–1.78. These values indicate a mafic composition, most likely of amphibolite facies. Also, a VP/VS versus VP plot indicates a magnesium-rich gabbro facies from post-spreading mantle melting at temperatures higher than normal. A third high-velocity zone (VP : 7.0–7.8 km/s;VP/VS: 1.85–1.96), 70-km wide and 4-km thick in the continent-ocean transition zone, is most likely to be a consequence of serpentinization of upwelled upper mantle. Seismic velocity structures and also gravity anomalies indicate that mantle upwelling/ serpentinization could be the most severe in the northeasternmost continent-ocean boundary of the SCS. Empirical relationships between seismic velocity and degree of serpentinization suggest that serpentinite content decreases with depth, from 43% in the lower crust to 37% into the mantle.
基金supported by the National Key Basic Research Program of China(973 Program)(Grant No.2011CB013501)the National Science Fund for Distinguished Young Scholars of China(Grant No.51125037)
文摘The shear wave(S-wave) component of the total blast vibration always plays an important role in damage to rock or adjacent structures.Numerical approach has been considered as an economical and effective tool in predicting blast vibration.However,S-wave has not yet attracted enough attention in previous numerical simulations.In this paper,three typical numerical models,i.e.the continuum-based elastic model,the continuum-based damage model,and the coupled smooth particle hydrodynamics(SPH)-finite element method(FEM) model,were first introduced and developed to simulate the blasting of a single cylindrical charge.Then,the numerical results from different models were evaluated based on a review on the generation mechanisms of S-wave during blasting.Finally,some suggestions on the selection of numerical approaches for simulating generation of the blast-induced S-wave were put forward.Results indicate that different numerical models produce different results of S-wave.The coupled numerical model was the best,for its outstanding capacity in producing S-wave component.It is suggested that the model that can describe the cracking,sliding or heaving of rock mass,and the movement of fragments near the borehole should be selected preferentially,and priority should be given to the material constitutive law that could record the nonlinear mechanical behavior of rock mass near the borehole.
基金Supported by National Natural Science Foundation of China(No.50378032and No.50538030)Associated Foundation of Earthquake Science(No.201009)Foundation of Heilongjiang Institute of Science and Technology(No.04-15).
文摘Microtremors array observation for estimating S-wave velocity structure from phase velocities of Rayleigh and Love wave on two practical sites in Tangshan area by a China-US joint group are researched.The phase velocities of Rayleigh wave are estimated from vertical component records and those of Love wave are estimated from three-component records of microtremors array using modified spatial auto-correlation method.Haskell matrix method is used in calculating Rayleigh and Love wave phase velocities,and the shallow S-wave velocity structure of two practical sites are estimated by means of a hybrid approach of Genetic Algorithm and Simplex.The results are compared with the PS logging data of the two sites,showing it is feasible to estimate the shallow S-wave velocity structure of practical site from the observation of microtremor array.
基金supported by the National Natural Science Foundation of China,Grant No.41774142
文摘Elastic reverse time migration(RTM)uses the elastic wave equation to extrapolate multicomponent seismic data to the subsurface and separate the elastic wavefield into P-and S-waves.P-and S-wave separation is a necessary step in elastic RTM to avoid crosstalk between coupled wavefields.However,the current curl-divergence operator-based separation method has a polarity reversal problem in PS imaging,and vector separation methods often have separation artifacts at the interface,which affects the quality of the imaging stack.We propose a non-artifact P-and S-wave separation method based on the first-order velocity-strain equation.This equation is used for wavefield extrapolation and separation in the first-order staggered-grid finite-difference scheme,and the storage and calculation amounts are consistent with the classical first-order velocity-stress equation.The separation equation does not calculate the partial derivatives of the elastic parameters,and thus,there is no artifact in the separated Pand S-waves.During wavefield extrapolation,the dynamic characteristics of the reflected wave undergo some changes,but the transmitted wavefield is accurate;therefore,it does not affect the dynamic characteristics of the final migration imaging.Through numerical examples of 2 D simple models,part SEAM model,BP model,and 3 D 4-layer model,different wavefield separation methods and corresponding elastic RTM imaging results are analyzed.We found that the velocity-strain based elastic RTM can image subsurface structures well,without spike artifacts caused by separation artifacts,and without polarity reversal phenomenon of the PS imaging.
基金State Key Basic Research Development and Programming Project (G199804070201) State Natural Science Foundation (40074008).
文摘In this article, we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail. Similar to radial receiver function, SV-component receiver function can be obtained by directly deconvolving the P-component from the SV-component of teleseismic recordings. Our analyses indicate that the change of amplitude of SV-component receiver function against the change of epicentral distance is less than that of radial receiver function. Moreover, the waveform of SV-component receiver function is simpler than the radial receiver function and gives prominence to the PS converted phases that are the most sensitive to the shear wave velocity structure in the inversion. The synthetic tests show that the convergence of SV-component receiver function inversion is faster than that of the radial receiver function inversion. As an example, we investigate the S-wave velocity structure beneath HIA sta-tion by using the SV-component receiver function inversion method.
基金supported by the National Natural Science Foundation of China(Nos.41304096 and 41176077)the National Science and Technology Major Project of China(No.2016ZX05024-001-002)+2 种基金the National High-tech R&D Program of China(863 ProgramNo.2013AA0925 01)the Fundamental Research Funds for the Central Universities(No.201762019)
文摘Estimation of S-wave velocity using logging data has mainly been performed for sandstone, mudstone and oil and gas strata, while its application to hydrate reservoirs has been largely overlooked. In this paper we present petxophysical methods to estimate the S-wave velocity of hydrate reservoirs with the P-wave velocity and the density as constraints. The three models used in this paper are an equivalent model (MBGL), a three-phase model (TPBE), and a thermo-elasticity model (TEM). The MBGL model can effectively describe the internal relationship among the components of the rock, and the estimated P-wave velocities are in good agreement with the measured data (2.8% error). However, in the TPBE model, the solid, liquid and gas phases axe considered to be independent of each other, and the estimation results are relatively low (46.6% error). The TEM model is based on the sensitivity of the gas hydrate to temperature and pressure, and the accuracy of the estimation results is also high (3.6% error). Before the estimation, the occurrence patterns of hydrates in the Shenhu area were examined, and occurrence state one (the hydrate is in solid form in the reservoir) was selected for analysis. By using the known P-wave velocity and density as constraints, a reasonable S-wave velocity value (ranging from 400 to 1100 m s 1 and for a hydrate layer of 1100 m s 1) can be obtained through multiple iterations. These methods and results provide new data and technical support for further research on hydrates and other geological features in the Shenhu area.
基金supported by China Geological Survey (DD20190083, DD20221662)National Natural Science Foundation of China (41904044, 41974064, 42174076, 41874069)Youth Innovation Promotion Association CAS (2019330).
文摘The Ningdu basin,located in southern Jiangxi province of southwest China,is one of the Mesozoic basin groups which has exploration prospects for geothermal energy.A study on the detailed velocity structure of the Ningdu basin can provide important information for geothermal resource exploration.In this study,we deployed a dense seismic array in the Ningdu basin to investigate the 3D velocity structure and discuss implications for geothermal exploration and geological evolution.Based on the dense seismic array including 35 short-period(5 s-100 Hz)seismometers with an average interstation distance of~5 km,Rayleigh surface wave dispersion curves were extracted from the continuous ambient noise data for surface wave tomographic inversion.Group velocity tomography was conducted and the 3D S-wave velocity structure was inverted by the neighborhood algorithm.The results revealed obvious low-velocity anomalies in the center of the basin,consistent with the low-velocity Cretaceous sedimentary rocks.The basement and basin-controlling fault can also be depicted by the S-wave velocity anomalies.The obvious seismic interface is about 2 km depth in the basin center and decreases to 700 m depth near the basin boundary,suggesting spatial thickness variations of the Cretaceous sediment.The fault features of the S-wave velocity profile coincide with the geological cognition of the western boundary basincontrolling fault,which may provide possible upwelling channels for geothermal fluid.This study suggests that seismic tomography with a dense array is an effective method and can play an important role in the detailed investigations of sedimentary basins.
文摘By processing S-wave data from the Fanshi-Huai’an-Taipusiqi DSS profile,which is a three-component,wide-angle reflection/refraction profile,and in the light of the results from P-wave interpretation,two-dimensional(2-D)structures of the crust and upper mantle are presented,including S-wave velocity Vs and the physical parameter of medium-Poisson’s ratio a.Taking other geological and geophysical information into account,and with reference to the results from petrophysical experiments at home and abroad,we carried out interpretation and inference with respect to deep crustal structure,tectonics,and lithologic characters.It has been concluded that in the upper and middle crust,a values are mostly not greater than 0.25,and rocks,which generally assume brittle,are mainly composed of granite; the rocks in the lower layer of the upper crust between Yangyuan-Huai’an containing inorganic CO2 itself releases carbon; for the rocks in the lower crust and crust-mantle transitional zone,which are comparatively