The desire for practical utilization of rechargeable lithium batteries with high energy density has motivated attempts to develop new electrode materials and battery systems. Here, without additional binders we presen...The desire for practical utilization of rechargeable lithium batteries with high energy density has motivated attempts to develop new electrode materials and battery systems. Here, without additional binders we present a simple vacuum filtration method to synthesize nitrogen and sulfur codoped graphene(N,S-G) blocking layer, which is ultra-lightweight, conductive, and free standing. When the N,S-G membrane was inserted between the catholyte and separator, the lithium–selenium(Li–Se)batteries exhibited a high reversible discharge capacity of 330.7 mAh g^(-1) at 1 C(1 C = 675 mA g^(-1)) after 500 cycles and high rate performance(over 310 mAh g^(-1) at 4 C) even at an active material loading as high as ~5 mg cm^(-2). This excellent performance can be ascribed to homogenous dispersion of the liquid active material in the electrode, good Li^+-ion conductivity, fast electronic transport in the conductive graphene framework, andstrong chemical confinement of polyselenides by nitrogen and sulfur atoms. More importantly, it is a promising strategy for enhancing the energy density of Li–Se batteries by using the catholyte with a lightweight heteroatom doping carbon matrix.展开更多
Titanium dioxide(TiO_2) has been investigated broadly as a stable,safe,and cheap anode material for sodium-ion batteries in recent years.However,the poor electronic conductivity and inherent sluggish sodium ion diffus...Titanium dioxide(TiO_2) has been investigated broadly as a stable,safe,and cheap anode material for sodium-ion batteries in recent years.However,the poor electronic conductivity and inherent sluggish sodium ion diffusion hinder its practical applications.Herein,a self-template and in situ vulcanization strategy is developed to synthesize self-supported hybrid nanotube arrays composed of nitrogen/sulfur-codoped carbon coated sulfur-doped TiO_2 nanotubes(S-TiO_2@NS-C) starting from H_2 Ti_2 O_5-H_2 O nanoarrays.The S-TiO_2@NS-C composite with one-dimensional nano-sized subunits integrates several merits.Specifically,sulfur doping strongly improves the Na~+ storage ability of TiO_2@C-N nanotubes by narrowing the bandgap of original TiO_2.Originating from the nanoarrays structures built from hollow nanotubes,carbon layer and sulfur doping,the sluggish Na~+ insertion/extraction kinetics is effectively improved and the volume variation of the electrode material is significantly alleviated.As a result,the S-TiO_2@NS-C nanoarrays present efficient sodium storage properties.The greatly improved sodium storage performances of S-TiO_2@NS-C nanoarrays confirm the importance of rational engineering and synthesis of hollow array architectures with higher complexity.展开更多
Three-dimensional(3D)carbon networks have been explored as promising capacitive materials thanks to their unique structural features such as large ion-accessible surface area and interconnected porous networks,thus en...Three-dimensional(3D)carbon networks have been explored as promising capacitive materials thanks to their unique structural features such as large ion-accessible surface area and interconnected porous networks,thus enhancing both ions and electrons transport.Here,sustainable bacterial cellulose(BC)is used both precursor and template for facile synthesis of free-standing N,S-codoped 3Dcarbon networks(a-NSC)by the pyrolysis and activation of polyrhodanine coated BC.The synthesized a-NSC shows highly conductive interconnected porous networks(24S·cm^(-1)),large surface area(1 420m^2·g^(-1))with hierarchical meso-microporosity,and high-level heteroatoms codoping(N:3.1%in atom,S:3.2%in atom).Benefitting from these,a-NSC as binder-free electrode exhibits an ultrahigh specific capacitance of 340F·g^(-1)(24μF·cm^(-2))at the current density of 0.5A·g^(-1)in 6MKOH electrolyte,high-rate capability(71%at 20A·g^(-1))and excellent cycle stability.Furthermore,the assembled symmetrical supercapacitor displays a much short time constant of 0.35sin 1MTEABF4/AN electrolyte,obtaining a maximum energy density of 32.1W·h·kg^(-1 )at power density of 637W·kg^(-1).The in situ multi-heteroatoms doping enables biocellulose-derived carbon networks to exploit its full potentials in energy storage applications,which can be extended to other dimensional carbon nanostructures.展开更多
Graphene-like N,S-codoped bio-carbon nanosheets(GNSCS) were prepared by a facile and environment-friendly NaCl non-aqueous ionic liquid route to house sulfur for lithium-sulfur battery. The natural nori powder was cal...Graphene-like N,S-codoped bio-carbon nanosheets(GNSCS) were prepared by a facile and environment-friendly NaCl non-aqueous ionic liquid route to house sulfur for lithium-sulfur battery. The natural nori powder was calcined at 900°C for 3 h under Ar, in which NaCl non-aqueous ionic liquid can exfoliate carbon aggregates into nanosheets. The structural characterization of GNSCS by a series of techniques demonstrates the graphene-like feature.When evaluated as the matrix for sulfur cathode, GNSCS/S exhibits more prominent cycling stability and rate capability.A discharge capacity of 548 mA h g-1 at a current density of 1.6 A g-1 after 400 cycles was delivered with a capacity fade rate of only 0.13% per cycle and an initial Coulombic efficiency(CE) as high as 99.7%. When increasing the areal sulfur loading up to 3 mg cm-2, the discharge capacity can still be retained at 647 mA h g-1 after more than 100 cycles with a low capacity degradation of only ~0.30% per cycle. The features of N/S dual-doping and the graphene-like structure are propitious to the electron transportation, lithium-ion diffusion and more active sites for chemically adsorbing polysulfides. It is anticipated that other functional biochar carbon can also be attained via the low-cost, sustainable and green method.展开更多
High fluorescence quantum yield(QY),excellent fluorescence stability,and low toxicity are essential for a good cellular imaging fluorescent probe.Green-emissive carbon quantum dots(CQDs)with many advantages,such as un...High fluorescence quantum yield(QY),excellent fluorescence stability,and low toxicity are essential for a good cellular imaging fluorescent probe.Green-emissive carbon quantum dots(CQDs)with many advantages,such as unique fluorescence properties,anti-photobleaching,low toxicity,fine biocompatibility and high penetration depth in tissues,have been considered as a potential candidate in cell imaging fluorescent probes.Herein,N,S-codoped green-emissive CQDs(QY=64.03%)were synthesized by the one-step hydrothermal method,with m-phenylenediamine as the carbon and nitrogen source,and L-cysteine as the nitrogen and sulfur dopant,under the optimum condition of 200℃ reaction for 2 h.Their luminescence was found to originate from the surface state.In light of the satisfactory photobleaching resistance and the low cytotoxicity,CQDs were used as a cell imaging probe for HeLa cell imaging.The results clearly indicate that cells can be labeled with CQDs,which can not only enter the cytoplasm,but also enter the nucleus through the nuclear pore,showing their broad application prospect in the field of cell imaging.展开更多
基金supported by the National Natural Science Foundation of China (51125001,51172005)the NSFCRGC Joint Research Scheme (51361165201)the Start-up Foundation of High-level Talents in Chongqing Technology and Business University (1856008)
文摘The desire for practical utilization of rechargeable lithium batteries with high energy density has motivated attempts to develop new electrode materials and battery systems. Here, without additional binders we present a simple vacuum filtration method to synthesize nitrogen and sulfur codoped graphene(N,S-G) blocking layer, which is ultra-lightweight, conductive, and free standing. When the N,S-G membrane was inserted between the catholyte and separator, the lithium–selenium(Li–Se)batteries exhibited a high reversible discharge capacity of 330.7 mAh g^(-1) at 1 C(1 C = 675 mA g^(-1)) after 500 cycles and high rate performance(over 310 mAh g^(-1) at 4 C) even at an active material loading as high as ~5 mg cm^(-2). This excellent performance can be ascribed to homogenous dispersion of the liquid active material in the electrode, good Li^+-ion conductivity, fast electronic transport in the conductive graphene framework, andstrong chemical confinement of polyselenides by nitrogen and sulfur atoms. More importantly, it is a promising strategy for enhancing the energy density of Li–Se batteries by using the catholyte with a lightweight heteroatom doping carbon matrix.
基金financial supports provided by the National Natural Science Foundation of China (21871164)the Taishan Scholar Project Foundation of Shandong Province (ts20190908, ts201511004)the Natural Science Foundation of Shandong Province (ZR2019MB024)。
文摘Titanium dioxide(TiO_2) has been investigated broadly as a stable,safe,and cheap anode material for sodium-ion batteries in recent years.However,the poor electronic conductivity and inherent sluggish sodium ion diffusion hinder its practical applications.Herein,a self-template and in situ vulcanization strategy is developed to synthesize self-supported hybrid nanotube arrays composed of nitrogen/sulfur-codoped carbon coated sulfur-doped TiO_2 nanotubes(S-TiO_2@NS-C) starting from H_2 Ti_2 O_5-H_2 O nanoarrays.The S-TiO_2@NS-C composite with one-dimensional nano-sized subunits integrates several merits.Specifically,sulfur doping strongly improves the Na~+ storage ability of TiO_2@C-N nanotubes by narrowing the bandgap of original TiO_2.Originating from the nanoarrays structures built from hollow nanotubes,carbon layer and sulfur doping,the sluggish Na~+ insertion/extraction kinetics is effectively improved and the volume variation of the electrode material is significantly alleviated.As a result,the S-TiO_2@NS-C nanoarrays present efficient sodium storage properties.The greatly improved sodium storage performances of S-TiO_2@NS-C nanoarrays confirm the importance of rational engineering and synthesis of hollow array architectures with higher complexity.
基金supported by the National Basic Research Program of China(973 Program)(No.2014CB239701)the National Natural Science Foundation of China(Nos.51672128,51372116,21773118)+2 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20150739,BK20151468)the Prospective Joint Research Project of Cooperative Innovation Fund of Jiangsu Province(No.BY2015003-7)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Three-dimensional(3D)carbon networks have been explored as promising capacitive materials thanks to their unique structural features such as large ion-accessible surface area and interconnected porous networks,thus enhancing both ions and electrons transport.Here,sustainable bacterial cellulose(BC)is used both precursor and template for facile synthesis of free-standing N,S-codoped 3Dcarbon networks(a-NSC)by the pyrolysis and activation of polyrhodanine coated BC.The synthesized a-NSC shows highly conductive interconnected porous networks(24S·cm^(-1)),large surface area(1 420m^2·g^(-1))with hierarchical meso-microporosity,and high-level heteroatoms codoping(N:3.1%in atom,S:3.2%in atom).Benefitting from these,a-NSC as binder-free electrode exhibits an ultrahigh specific capacitance of 340F·g^(-1)(24μF·cm^(-2))at the current density of 0.5A·g^(-1)in 6MKOH electrolyte,high-rate capability(71%at 20A·g^(-1))and excellent cycle stability.Furthermore,the assembled symmetrical supercapacitor displays a much short time constant of 0.35sin 1MTEABF4/AN electrolyte,obtaining a maximum energy density of 32.1W·h·kg^(-1 )at power density of 637W·kg^(-1).The in situ multi-heteroatoms doping enables biocellulose-derived carbon networks to exploit its full potentials in energy storage applications,which can be extended to other dimensional carbon nanostructures.
基金the financial supports provided by the National Natural Science Foundation of China (21601108 and U1764258)Young Scholars Program of Shandong University (2017WLJH15)+1 种基金the Fundamental Research Funds of Shandong University (2016JC033 and 2016GN010)the Taishan Scholar Project of Shandong Province (ts201511004)
文摘Graphene-like N,S-codoped bio-carbon nanosheets(GNSCS) were prepared by a facile and environment-friendly NaCl non-aqueous ionic liquid route to house sulfur for lithium-sulfur battery. The natural nori powder was calcined at 900°C for 3 h under Ar, in which NaCl non-aqueous ionic liquid can exfoliate carbon aggregates into nanosheets. The structural characterization of GNSCS by a series of techniques demonstrates the graphene-like feature.When evaluated as the matrix for sulfur cathode, GNSCS/S exhibits more prominent cycling stability and rate capability.A discharge capacity of 548 mA h g-1 at a current density of 1.6 A g-1 after 400 cycles was delivered with a capacity fade rate of only 0.13% per cycle and an initial Coulombic efficiency(CE) as high as 99.7%. When increasing the areal sulfur loading up to 3 mg cm-2, the discharge capacity can still be retained at 647 mA h g-1 after more than 100 cycles with a low capacity degradation of only ~0.30% per cycle. The features of N/S dual-doping and the graphene-like structure are propitious to the electron transportation, lithium-ion diffusion and more active sites for chemically adsorbing polysulfides. It is anticipated that other functional biochar carbon can also be attained via the low-cost, sustainable and green method.
基金supported by the National Natural Science Foundation of China(Grant Nos.51972221 and 51803148)Central Government Guides Local Science and Technology Development Projects(YDZX20201400001722)+1 种基金the Shanxi Provincial Excellent Talents Science and Technology Innovation Project(201805D211001)the Natural Science Foundation of Shanxi Province(201901D211502 and 201901D211501).
文摘High fluorescence quantum yield(QY),excellent fluorescence stability,and low toxicity are essential for a good cellular imaging fluorescent probe.Green-emissive carbon quantum dots(CQDs)with many advantages,such as unique fluorescence properties,anti-photobleaching,low toxicity,fine biocompatibility and high penetration depth in tissues,have been considered as a potential candidate in cell imaging fluorescent probes.Herein,N,S-codoped green-emissive CQDs(QY=64.03%)were synthesized by the one-step hydrothermal method,with m-phenylenediamine as the carbon and nitrogen source,and L-cysteine as the nitrogen and sulfur dopant,under the optimum condition of 200℃ reaction for 2 h.Their luminescence was found to originate from the surface state.In light of the satisfactory photobleaching resistance and the low cytotoxicity,CQDs were used as a cell imaging probe for HeLa cell imaging.The results clearly indicate that cells can be labeled with CQDs,which can not only enter the cytoplasm,but also enter the nucleus through the nuclear pore,showing their broad application prospect in the field of cell imaging.