We apply the method of guidance by a required velocity for solving the optimal control problem over spacecraft’s reorientation from known initial attitude into a required final attitude.We suppose that attitude contr...We apply the method of guidance by a required velocity for solving the optimal control problem over spacecraft’s reorientation from known initial attitude into a required final attitude.We suppose that attitude control is carried out by impulse jet engines.For optimization of fuel consumption,the controlling moments are calculated and formed according to the method of free trajectories together with principle of iterative control using the quaternions for generating commands to actuators.Optimal solution corresponds to the principle“acceleration-free rotation-separate corrections-free rotation-braking”.Rotation along a hitting trajectory is supported by insignificant correction of the uncontrolled motion at discrete instants between segments of acceleration and braking.Various strategies of forming the correction impulses during stage of free motion are suggested.Improving accuracy of achievement of spacecraft's final position is reached by terminal control using information about current attitude and angular velocity measurements for determining an instant of beginning of braking(condition for start of braking based on actual motion parameters is formulated in analytical form).The described method is universal and invariant relative to moments of inertia.Developed laws of attitude control concern the algorithms with prognostic model,the synthesized control modes are invariant with respect to both external perturbations and parametric errors.Results of mathematical modeling are presented that demonstrate practical feasibility and high efficiency of designed algorithms.展开更多
This paper employs a velocity plus displacement(V+D)-based equivalent force control(EFC) method to solve the velocity/displacement difference equation in a real-time substructure test. This method uses type 2 fee...This paper employs a velocity plus displacement(V+D)-based equivalent force control(EFC) method to solve the velocity/displacement difference equation in a real-time substructure test. This method uses type 2 feedback control loops to replace mathematical iteration to solve the nonlinear dynamic equation. A spectral radius analysis of the amplification matrix shows that the type 2 EFC-explicit, Newmark-β method has beneficial numerical characteristics for this method. Its stability limit of Ω = 2 remains unchanged regardless of the system damping because the velocity is achieved with very high accuracy during simulation. In contrast, the stability limits of the central difference method using direct velocity prediction and the EFC-average acceleration method with linear interpolation are shown to decrease with an increase in system damping. In fact, the EFC-average acceleration method is shown to change from unconditionally stable to conditionally stable. We also show that if an over-damped system with a damping ratio of 1.05 is considered, the stability limit is reduced to Ω =1.45. Finally, the results from an experiment with a single-degree-of-freedom structure installed with a magneto-rheological(MR) damper are presented. The results demonstrate that the proposed method is able to follow both displacement and velocity commands with moderate accuracy, resulting in improved test performance and accuracy for structures that are sensitive to both velocity and displacement inputs. Although the findings of the study are promising, additional test data and several further improvements will be required to draw general conclusions.展开更多
A vorticity-velocity method was used to study the incompressible viscous fluid flow around a circular cylinder with surface suction or blowing. The resulted high order implicit difference equations were effeciently so...A vorticity-velocity method was used to study the incompressible viscous fluid flow around a circular cylinder with surface suction or blowing. The resulted high order implicit difference equations were effeciently solved by the modified incomplete LU decomposition conjugate gradient scheme ( MILU-CG). The effects of surface suction or blowing' s position and strength on the vortex structures in the cylinder wake, as well as on the drag and lift forces at Reynoldes number Re = 100 were investigated numerically. The results show that the suction on the shoulder of the cylinder or the blowing on the rear of the cylinder can effeciently suppress the asymmetry of the vortex wake in the transverse direction and greatly reduce the lift force; the suction on the shoulder of the cylinder, when its strength is properly chosen, can reduce the drag force significantly, too.展开更多
Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion ...Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.展开更多
To realize low harmonic distortion of the vibration waveform output from electromagnetic vibrators,we propose a vibration harmonic suppression technology based on an improved sensorless feedback control method.Without...To realize low harmonic distortion of the vibration waveform output from electromagnetic vibrators,we propose a vibration harmonic suppression technology based on an improved sensorless feedback control method.Without changing the original driving circuit,the alternating current(AC)equivalent resistance of the driving coil is used to obtain high-precision vibration velocity information,and then a simple and reliable velocity feedback control system is established.Through the study of the effect of different values of key parameters on the system,we have achieved an effective expansion of the velocity characteristic frequency band of low-frequency vibration,resulting in an enhanced harmonic suppression capability of velocity feedback control.We present extensive experiments to prove the effectiveness of the proposed method and make comparisons with conventional control methods.In the frequency range of 0.01-1.00 Hz,without using any sensors,the method proposed in this study can reduce the harmonic distortion of the vibration waveform by about 40%compared to open-loop control and by about 20%compared to a conventional sensorless feedback control method.展开更多
In recent years,the new technologies and discoveries on manufacturing materials have encouraged researchers to investigate the appearance of material properties that are not naturally available.Materials featuring a s...In recent years,the new technologies and discoveries on manufacturing materials have encouraged researchers to investigate the appearance of material properties that are not naturally available.Materials featuring a specific stiffness,or structures that combine non-structural and stmctural functions are applied in the aerospace,electronics and medical industry fields.Particularly,structures designed for dynamic actuation with reduced vibration response are the focus of this work.The bi-material and multifunctional concepts are considered for the design of a controlled piezoelectric actuator with vibration suppression by means of the topology optimization method(TOM).The bi-material piezoelectric actuator(BPEA)has its metallic host layer designed by the TOM,which defines the structural function,and the electric function is given by two piezo-ceramic layers that act as a sensor and an actuator coupled with a constant gain active velocity feedback control(AVFC).The AVFC,provided by the piezoelectric layers,affects the structural damping of the system through the velocity state variables readings in time domain.The dynamic equation analyzed throughout the optimization procedure is fully elaborated and implemented.The dynamic response for the rectangular fbur-noded finite element analysis is obtained by the Newmark's time-integration method,which is applied to the physical and the adjoint systems,given that the adjoint formulation is needed for the sensitivity analysis.A gradient-based optimization method is applied to minimize the displacement energy output measured at a predefined degree-of-freedom of the BPEA when a transient mechanical load is applied.Results are obtained for different control gain values to evaluate their influence on the final topology.展开更多
文摘We apply the method of guidance by a required velocity for solving the optimal control problem over spacecraft’s reorientation from known initial attitude into a required final attitude.We suppose that attitude control is carried out by impulse jet engines.For optimization of fuel consumption,the controlling moments are calculated and formed according to the method of free trajectories together with principle of iterative control using the quaternions for generating commands to actuators.Optimal solution corresponds to the principle“acceleration-free rotation-separate corrections-free rotation-braking”.Rotation along a hitting trajectory is supported by insignificant correction of the uncontrolled motion at discrete instants between segments of acceleration and braking.Various strategies of forming the correction impulses during stage of free motion are suggested.Improving accuracy of achievement of spacecraft's final position is reached by terminal control using information about current attitude and angular velocity measurements for determining an instant of beginning of braking(condition for start of braking based on actual motion parameters is formulated in analytical form).The described method is universal and invariant relative to moments of inertia.Developed laws of attitude control concern the algorithms with prognostic model,the synthesized control modes are invariant with respect to both external perturbations and parametric errors.Results of mathematical modeling are presented that demonstrate practical feasibility and high efficiency of designed algorithms.
基金Scientific Research Fund of the Institute of Engineering Mechanics,CEA under Grant No.2016B09,2017A02 and 2016A06the National Natural Science Foundation of China under Grant No,51378478,51408565,51678538 and 51161120360the National ScienceTechnology Support Plan Projects(2016YFC0701106)
文摘This paper employs a velocity plus displacement(V+D)-based equivalent force control(EFC) method to solve the velocity/displacement difference equation in a real-time substructure test. This method uses type 2 feedback control loops to replace mathematical iteration to solve the nonlinear dynamic equation. A spectral radius analysis of the amplification matrix shows that the type 2 EFC-explicit, Newmark-β method has beneficial numerical characteristics for this method. Its stability limit of Ω = 2 remains unchanged regardless of the system damping because the velocity is achieved with very high accuracy during simulation. In contrast, the stability limits of the central difference method using direct velocity prediction and the EFC-average acceleration method with linear interpolation are shown to decrease with an increase in system damping. In fact, the EFC-average acceleration method is shown to change from unconditionally stable to conditionally stable. We also show that if an over-damped system with a damping ratio of 1.05 is considered, the stability limit is reduced to Ω =1.45. Finally, the results from an experiment with a single-degree-of-freedom structure installed with a magneto-rheological(MR) damper are presented. The results demonstrate that the proposed method is able to follow both displacement and velocity commands with moderate accuracy, resulting in improved test performance and accuracy for structures that are sensitive to both velocity and displacement inputs. Although the findings of the study are promising, additional test data and several further improvements will be required to draw general conclusions.
基金Foundation item:the Natural Science Foundation of Jiangsu Province(BK97056109)
文摘A vorticity-velocity method was used to study the incompressible viscous fluid flow around a circular cylinder with surface suction or blowing. The resulted high order implicit difference equations were effeciently solved by the modified incomplete LU decomposition conjugate gradient scheme ( MILU-CG). The effects of surface suction or blowing' s position and strength on the vortex structures in the cylinder wake, as well as on the drag and lift forces at Reynoldes number Re = 100 were investigated numerically. The results show that the suction on the shoulder of the cylinder or the blowing on the rear of the cylinder can effeciently suppress the asymmetry of the vortex wake in the transverse direction and greatly reduce the lift force; the suction on the shoulder of the cylinder, when its strength is properly chosen, can reduce the drag force significantly, too.
文摘Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.
基金Project supported by the Natural Science Foundation of Heilongjiang Province,China(No.LH2021E060)the National Natural Science Foundation of China(No.52075133)the CGN-HIT Advanced Nuclear and New Energy Research Institute,China(No.CGN-HIT202215)。
文摘To realize low harmonic distortion of the vibration waveform output from electromagnetic vibrators,we propose a vibration harmonic suppression technology based on an improved sensorless feedback control method.Without changing the original driving circuit,the alternating current(AC)equivalent resistance of the driving coil is used to obtain high-precision vibration velocity information,and then a simple and reliable velocity feedback control system is established.Through the study of the effect of different values of key parameters on the system,we have achieved an effective expansion of the velocity characteristic frequency band of low-frequency vibration,resulting in an enhanced harmonic suppression capability of velocity feedback control.We present extensive experiments to prove the effectiveness of the proposed method and make comparisons with conventional control methods.In the frequency range of 0.01-1.00 Hz,without using any sensors,the method proposed in this study can reduce the harmonic distortion of the vibration waveform by about 40%compared to open-loop control and by about 20%compared to a conventional sensorless feedback control method.
文摘In recent years,the new technologies and discoveries on manufacturing materials have encouraged researchers to investigate the appearance of material properties that are not naturally available.Materials featuring a specific stiffness,or structures that combine non-structural and stmctural functions are applied in the aerospace,electronics and medical industry fields.Particularly,structures designed for dynamic actuation with reduced vibration response are the focus of this work.The bi-material and multifunctional concepts are considered for the design of a controlled piezoelectric actuator with vibration suppression by means of the topology optimization method(TOM).The bi-material piezoelectric actuator(BPEA)has its metallic host layer designed by the TOM,which defines the structural function,and the electric function is given by two piezo-ceramic layers that act as a sensor and an actuator coupled with a constant gain active velocity feedback control(AVFC).The AVFC,provided by the piezoelectric layers,affects the structural damping of the system through the velocity state variables readings in time domain.The dynamic equation analyzed throughout the optimization procedure is fully elaborated and implemented.The dynamic response for the rectangular fbur-noded finite element analysis is obtained by the Newmark's time-integration method,which is applied to the physical and the adjoint systems,given that the adjoint formulation is needed for the sensitivity analysis.A gradient-based optimization method is applied to minimize the displacement energy output measured at a predefined degree-of-freedom of the BPEA when a transient mechanical load is applied.Results are obtained for different control gain values to evaluate their influence on the final topology.