期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
S-Nitrosoglutathion Reductase Activity Modulates the Thermotolerance of Seeds Germination by Controlling ABI5 Stability under High Temperature 被引量:4
1
作者 Wenjie Wei Yulan Hu +4 位作者 Wenjuan Yang Xiaoli Li Jiali Wei Xiangyang Hu Ping Li 《Phyton-International Journal of Experimental Botany》 SCIE 2021年第4期1075-1087,共13页
Seed germination or dormancy status is strictly controlled by endogenous phytohormone and exogenous environment signals.Abscisic acid(ABA)is the important phytohormone to suppress seed germination.Ambient high tempera... Seed germination or dormancy status is strictly controlled by endogenous phytohormone and exogenous environment signals.Abscisic acid(ABA)is the important phytohormone to suppress seed germination.Ambient high temperature(HT)also suppressed seed germination,or called as secondary seed dormancy,through upregulating ABI5,the essential component of ABA signal pathway.Previous result shows that appropriate nitric oxide(NO)breaks seed dormancy through triggering S-nitrosoglutathion reductase(GSNOR1)-dependent S-nitrosylation modification of ABI5 protein,subsequently inducing the degradation of ABI5.Here we found that HT induced the degradation of GSNOR1 protein and reduced its activity,thus accumulated more reactive nitrogen species(RNS)to damage seeds viability.Furthermore,HT increased the S-nitrosylation modification of GSNOR1 protein,and triggered the degradation of GSNOR1,therefore stabilizing ABI5 to suppress seed germination.Consistently,the ABI5 protein abundance was lower in the transgenic line overexpressing GSNOR1,but higher in the gsnor mutant after HT stress.Genetic analysis showed that GSNOR1 affected seeds germination through ABI5 under HT.Taken together,our data reveals a new mechanism by which HT triggers the degradation of GSNOR1,and thus stabilizing ABI5 to suppress seed germination,such mechanism provides the possibility to enhance seed germination tolerance to HT through genetic modification of GNSOR1. 展开更多
关键词 Seed germination ambient high temperature gsnor1 s-nitrosoglutathion ABI5
下载PDF
GSNOR的原核表达及亚硝基化修饰对其活性的影响
2
作者 张林林 韩毅 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2021年第10期1425-1429,共5页
S-亚硝基谷胱甘肽还原酶(GSNOR)能不可逆降解S-亚硝基谷胱甘肽(GSNO),富含多个保守半胱氨酸位点,在植物生长、抵御病原菌、耐热性以及细胞死亡等方面发挥重要作用。NO常通过对目标蛋白的半胱氨酸残基进行亚硝基化修饰,进而发挥信号转导... S-亚硝基谷胱甘肽还原酶(GSNOR)能不可逆降解S-亚硝基谷胱甘肽(GSNO),富含多个保守半胱氨酸位点,在植物生长、抵御病原菌、耐热性以及细胞死亡等方面发挥重要作用。NO常通过对目标蛋白的半胱氨酸残基进行亚硝基化修饰,进而发挥信号转导的作用。为了研究NO能否亚硝基化GSNOR及该修饰对GSNOR活性的影响,文章利用拟南芥GSNOR基因的全编码序列(coding sequence,CDS)构建原核表达载体PET-28a(+)-GSNOR,转入大肠杆菌感受态细胞BL21(DE3)后,诱导表达得到带有6×His标签的融合蛋白,利用镍柱分离纯化得到酶活高达140 U/mg的GSNOR融合蛋白,蛋白质量浓度为0.77μg/μL。1 mmol/L NO供体2-(N,N-二乙基氨基)-二氮烯-2-氧二乙铵盐(DEA/NO)和GSNOR蛋白孵育后,运用生物素转换技术(biotin switch technique,BST)检测到NO的处理使得GSNOR发生了亚硝基化,还原剂二硫苏糖醇(DTT)可明显削弱蛋白的亚硝基化水平。并且测定NO处理后GSNOR蛋白的酶活,结果显示,NO处理后的GSNOR酶活降低,二硫苏糖醇(DTT)可使酶活恢复。结果表明NO通过亚硝化可降低GSNOR的活性,暗示了NO可能通过修饰GSNOR从而负调控NO水平的信号转导机制。 展开更多
关键词 S-亚硝基谷胱甘肽还原酶 原核表达 一氧化氮 翻译后修饰 亚硝基化
下载PDF
川陈皮素改善衰老认知功能损伤的作用与机制(英文) 被引量:9
3
作者 姚勤 张玉英 +2 位作者 吴凯源 褚博煜 陈畅 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2019年第6期578-586,共9页
随着世界人口的老龄化,与年龄相关认知功能障碍的威胁越来越大.研究年龄相关认知功能损伤的发病机制及寻找有效的防治策略具有重要意义.我们之前的研究表明,衰老小鼠海马中S-亚硝基谷胱甘肽还原酶(S-nitrosoglutathione reductase,GSNOR... 随着世界人口的老龄化,与年龄相关认知功能障碍的威胁越来越大.研究年龄相关认知功能损伤的发病机制及寻找有效的防治策略具有重要意义.我们之前的研究表明,衰老小鼠海马中S-亚硝基谷胱甘肽还原酶(S-nitrosoglutathione reductase,GSNOR)显著升高,神经元特异性高表达GSNOR转基因小鼠在行为学检测中表现出认知功能障碍.然而,其分子机制仍不清楚.在本研究中发现,CREB信号通路在GSNOR高表达转基因小鼠及原代培养小鼠海马神经元中均被GSNOR下调.在Y迷宫中检测表明,连续7 d腹腔注射CREB激活剂川陈皮素,能改善GSNOR过表达小鼠的认知损伤.进一步通过恐惧箱实验及Y迷宫测试研究川陈皮素对自然衰老小鼠认知功能的作用,发现川陈皮素能显著提高自然衰老小鼠在Y迷宫测试中的正确选择率以及在恐惧箱中的冻结时间,表明川陈皮素能显著改善衰老相关的认知功能.同样,川陈皮素上调了CREB磷酸化以及PSD95和Glu R1的水平,表明CREB信号上调在改善自然衰老认知功能损伤中发挥了重要作用.本研究为衰老认知功能损伤机制及改善方法提供了新的依据,GSNOR转基因小鼠也可能成为一种新的认知功能损伤模型. 展开更多
关键词 亚硝基谷胱甘肽还原酶 一氧化氮 磷酸化CREB 川陈皮素 衰老相关的认知损伤
下载PDF
Loss of GSNOR1 Function Leads to Compromised Auxin Signaling and Polar Auxin Transport 被引量:4
4
作者 Ya-Fei Shi Da-Li Wang +7 位作者 Chao Wang Angela Hendrickson Culler Molly A. Kreiser Jayanti Suresh Jerry D. Cohen Jianwei Pan Barbara Baker Jian-Zhong Liu 《Molecular Plant》 SCIE CAS CSCD 2015年第9期1350-1365,共16页
Cross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin tra... Cross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin transport probably through S-nitrosylation. However, genetic evidence for the effect of S-nitrosylation on auxin physiology has been lacking. In this study, we used a genetic approach to understand the broader role of S-nitrosylation in auxin physiology in Arabidopsis. We compared auxin signaling and transport in Col-0 and gsnorl-3, a loss-of-function GSNOR1 mutant defective in protein de-nitrosylation. Our results showed that auxin signaling was impaired in the gsnorl-3 mutant as revealed by significantly reduced DR5-GUS/ DR5-GFP accumulation and compromised degradation of AXR3NT-GUS, a useful reporter in interrogating auxin-mediated degradation of Aux/IAA by auxin receptors. In addition, polar auxin transport was compro- mised in gsnorl-3, which was correlated with universally reduced levels of PIN or GFP-PIN proteins in the roots of the mutant in a manner independent of transcription and 26S proteasome degradation. Our results suggest that S-nitrosylation and GSNORl-mediated de-nitrosylation contribute to auxin physiology, and impaired auxin signaling and compromised auxin transport are responsible for the auxin-related morpho- logical phenotypes displayed by the gsnorl-3 mutant. 展开更多
关键词 phytohormone cross talk s-nitrosoglutathione reductase gsnor S-NITROSYLATION auxin signaling auxin transport ARABIDOPSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部