BACKGROUND Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2(HER-2)-positive gastric cancer(GC).However,the efficacy of this treat...BACKGROUND Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2(HER-2)-positive gastric cancer(GC).However,the efficacy of this treatment is hindered by substantial challenges associated with both primary and acquired drug resistance.While S-phase kinase associated protein 2(Skp2)overexpression has been implicated in the malignant progression of GC,its role in regulating trastuzumab resistance in this context remains uncertain.Despite the numerous studies investigating Skp2 inhibitors among small molecule compounds and natural products,there has been a lack of successful commercialization of drugs specifically targeting Skp2.AIM To discover a Skp2 blocker among currently available medications and develop a therapeutic strategy for HER2-positive GC patients who have experienced progression following trastuzumab-based treatment.METHODS Skp2 exogenous overexpression plasmids and small interfering RNA vectors were utilized to investigate the correlation between Skp2 expression and trastuzumab resistance in GC cells.Q-PCR,western blot,and immunohistochemical analyses were conducted to evaluate the regulatory effect of thioridazine on Skp2 expression.A cell counting kit-8 assay,flow cytometry,a amplex red glucose/glucose oxidase assay kit,and a lactate assay kit were utilized to measure the proliferation,apoptosis,and glycolytic activity of GC cells in vitro.A xenograft model established with human GC in nude mice was used to assess thioridazine's effectiveness in vivo.RESULTS The expression of Skp2 exhibited a negative correlation with the sensitivity of HER2-positive GC cells to trastuzumab.Thioridazine demonstrated the ability to directly bind to Skp2,resulting in a reduction in Skp2 expression at both the transcriptional and translational levels.Moreover,thioridazine effectively inhibited cell proliferation,exhibited antiapoptotic properties,and decreased the glucose uptake rate and lactate production by suppressing Skp2/protein kinase B/mammalian target of rapamycin/glucose transporter type 1 signaling pathways.The combination of thioridazine with either trastuzumab or lapatinib exhibited a more pronounced anticancer effect in vivo,surpassing the efficacy of either monotherapy.CONCLUSION Thioridazine demonstrates promising outcomes in preclinical GC models and offers a novel therapeutic approach for addressing trastuzumab resistance,particularly when used in conjunction with lapatinib.This compound has potential benefits for patients with Skp2-proficient tumors.展开更多
Background:XIAP-associated factor 1(XAF1)negatively regulates the function of the X-linked inhibitor of apoptosis protein(XIAP),a member of the IAP family that exerts antiapoptotic effects.The extracellular signal-reg...Background:XIAP-associated factor 1(XAF1)negatively regulates the function of the X-linked inhibitor of apoptosis protein(XIAP),a member of the IAP family that exerts antiapoptotic effects.The extracellular signal-regulated kinase(ERK)pathway is thought to increase cell proliferation and to protect cells from apoptosis.The aim of the study was to investigate the correlation between the ERK1/2 signaling pathway and XAF1 in colon cancer.Methods:Four human colon cancer cell lines,HCT1116 and Lovo(wildtype p53),DLD1 and SW1116(mutant p53),were used.Lovo stable transfectants with XAF1 sense and antisense were established.The effects of dominant-negative MEK1(DN-MEK1)and MEK-specific inhibitor U0126 on the ERK signaling pathway and expression of XAF1 and XIAP proteins were determined.The transcription activity of core XAF1 promoter was assessed by dual luciferase reporter assay.Cell proliferation was measured by MTT assay.Apoptosis was determined by Hoechst 33258 staining.Results:U0126 increased the expression of XAF1 in a time-and dose-dependent manner.A similar result was obtained in cells transfected with DN-MEK1 treatment.Conversely,the expression of XIAP was down-regulated.Activity of the putative promoter of the XAF1 gene was significantly increased by U0126 treatment and DN-MEK1 transient transfection.rhEGF-stimulated phosphorylation of ERK appeared to have little or no effect on XAF1 expression.Overexpression of XAF1 was more sensitive to U0126-induced apoptosis,whereas down-regulation of XAF1 by antisense reversed U0126-induced inhibition of cell proliferation.Conclusions:XAF1 expression was up-regulated by inhibition of the ERK1/2 pathway through transcriptional regulation,which required de novo protein synthesis.The results suggest that XAF1 mediates apoptosis induced by the ERK1/2 pathway in colon cancer.展开更多
Tau, a primary component of microtubule-associated protein, promotes microtubule assembly and/or disassembly and maintains the stability of the microtubule structure. Although the importance of tau in neurodegenerativ...Tau, a primary component of microtubule-associated protein, promotes microtubule assembly and/or disassembly and maintains the stability of the microtubule structure. Although the importance of tau in neurodegenerative diseases has been well demonstrated, wheth- er tau is involved in peripheral nerve regeneration remains unknown. In the current study, we obtained sciatic nerve tissue from adult rats 0, 1, 4, 7, and 14 days after sciatic nerve crush and examined tau mRNA and protein expression levels and the location of tau in the sciatic nerve following peripheral nerve injury. The results from our quantitative reverse transcription polymerase chain reaction analysis showed that compared with the uninjured control sciatic nerve, mRNA expression levels for both tau and tau tubulin kinase 1, a serine/ threonine kinase that regulates tau phosphorylation, were decreased following peripheral nerve injury. Our western blot assay results suggested that the protein expression levels of tau and phosphorylated tau initially decreased 1 day post nerve injury but then gradually increased. The results of our immunohistochemical labeling showed that the location of tau protein was not altered by nerve injury. Thus, these results showed that the expression of tau was changed following sciatic nerve crush, suggesting that tau may be involved in periph- eral nerve repair and regeneration.展开更多
目的探讨利拉鲁肽通过沉默信息调节因子1(silent information regulator 1,SIRT1)/腺苷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase,AMPK)通路改善小鼠肝脏脂质变性的机制。方法将24只健康雄性6周龄C57BL/6J小鼠...目的探讨利拉鲁肽通过沉默信息调节因子1(silent information regulator 1,SIRT1)/腺苷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase,AMPK)通路改善小鼠肝脏脂质变性的机制。方法将24只健康雄性6周龄C57BL/6J小鼠随机分为对照组、模型组、模型+利拉鲁肽组、模型+SIRT1组、模型+SIRT1+利拉鲁肽组、模型+SIRT1-NC组,每组4只。对照组普通饲料饲养,予以等容积生理盐水皮下注射,模型组高脂饲养12周建立代谢相关脂肪性肝病(metabolic dysfunction-associated fatty liver disease,MAFLD)模型,之后3周尾静脉注射SIRT1干扰慢病毒及利拉鲁肽。检测各组小鼠血清甘油三酯和丙氨酸氨基转移酶(alanine aminotransferase,ALT)水平,采用HE染色和油红O染色观察肝组织病理,采用实时荧光定量RT-PCR检测AMPK、SIRT1、肝激酶B1(liver kinase B1,LKB1)和去乙酰化固醇调节元件结合蛋白(sterol regulatory element binding protein-1c,SREBP-1c)基因表达水平,采用Western blot检测蛋白表达水平。结果利拉鲁肽可降低高脂喂养的C57BL/6J小鼠体质量、肝湿重、血清甘油三酯及ALT水平,油红O染色可见肝细胞脂滴减少。与模型组相比,模型+利拉鲁肽组SIRT1(0.212±0.110比0.076±0.010)、AMPK(0.518±0.051比0.248±0.023)、LKB1(1.023±0.039比0.576±0.029)基因表达量和AMPK(0.212±0.026比0.100±0.006)、LKB1(0.413±0.016比0.221±0.015)蛋白表达水平均上调,而SREBP-1c基因(0.727±0.249比9.007±1.530)和蛋白(0.187±0.008比0.824±0.114)表达水平均下调(P均<0.05)。与模型组相比,模型+SIRT1组SIRT1(0.029±0.003比0.076±0.010)、AMPK(0.105±0.013比0.248±0.023)、LKB1(0.333±0.106比0.576±0.029)基因表达量均下调(P均<0.05)。与模型+SIRT1组相比,模型+SIRT1+利拉鲁肽组LKB1(0.945±0.110比0.333±0.106;0.380±0.004比0.145±0.014)、AMPK(0.319±0.051比0.105±0.013;0.181±0.039比0.051±0.012)基因表达量和蛋白表达量均上调,而SREBP-1c基因表达量(4.239±0.554比12.740±0.976)下调(P均<0.05)。结论利拉鲁肽改善C57BL/6J小鼠肝脏脂毒性可能通过直接上调SIRT1/AMPK通路信号分子基因和蛋白表达水平,或间接激活LKB1并增强AMPK基因和蛋白表达、拮抗SREBP-1c基因和蛋白表达,从而降低脂质合成相关分子水平,而干扰SIRT1表达削弱了利拉鲁肽上调SIRT1/AMPK通路改善肝脏脂肪变性的作用。展开更多
Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynami...Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynamin-related protein 1 (Drp1) can trigger neuronal apoptosis following cerebral ischemia/reperfusion injury. Herein, we examined the hypothesis that electroacupuncture pretreatment can regulate Drp1, and thus inhibit mitochondrial fission to provide cerebral protection. Rat models of focal cerebral ischemia/reperfusion injury were established by middle cerebral artery occlusion at 24 hours after 5 consecutive days of preconditioning with electroacupuncture at GV20 (depth 2 mm, intensity 1 mA, frequency 2/15 Hz, for 30 minutes, once a day). Neurological function was assessed using the Longa neurological deficit score. Pathological changes in the ischemic penumbra on the injury side were assessed by hematoxylin-eosin staining. Cellular apoptosis in the ischemic penumbra on the injury side was assessed by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling staining. Mitochondrial ultrastructure in the ischemic penumbra on the injury side was assessed by transmission electron microscopy. Drp1 and cytochrome c expression in the ischemic penumbra on the injury side were assessed by western blot assay. Results showed that electroacupuncture preconditioning decreased expression of total and mitochondrial Drp1, decreased expression of total and cytosolic cytochrome c, maintained mitochondrial morphology and reduced the proportion of apoptotic cells in the ischemic penumbra on the injury side, with associated improvements in neurological function. These data suggest that electroacupuncture preconditioning-induced neuronal protection involves inhibition of the expression and translocation of Drp1.展开更多
基金Supported by Youth Fund of National Natural Science Foundation of China,No.81803575,No.31902287Kaifeng Science and Technology Development Plan Project,No.2203008+2 种基金Key Specialized Research and Promotion Project of Henan Province in 2023,No.232102311205Henan Medical Science and Technology Research Program Project,No.LHGJ20210801College Students Innovation and Entrepreneurship Training Program of Henan University,No.20231022007.
文摘BACKGROUND Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2(HER-2)-positive gastric cancer(GC).However,the efficacy of this treatment is hindered by substantial challenges associated with both primary and acquired drug resistance.While S-phase kinase associated protein 2(Skp2)overexpression has been implicated in the malignant progression of GC,its role in regulating trastuzumab resistance in this context remains uncertain.Despite the numerous studies investigating Skp2 inhibitors among small molecule compounds and natural products,there has been a lack of successful commercialization of drugs specifically targeting Skp2.AIM To discover a Skp2 blocker among currently available medications and develop a therapeutic strategy for HER2-positive GC patients who have experienced progression following trastuzumab-based treatment.METHODS Skp2 exogenous overexpression plasmids and small interfering RNA vectors were utilized to investigate the correlation between Skp2 expression and trastuzumab resistance in GC cells.Q-PCR,western blot,and immunohistochemical analyses were conducted to evaluate the regulatory effect of thioridazine on Skp2 expression.A cell counting kit-8 assay,flow cytometry,a amplex red glucose/glucose oxidase assay kit,and a lactate assay kit were utilized to measure the proliferation,apoptosis,and glycolytic activity of GC cells in vitro.A xenograft model established with human GC in nude mice was used to assess thioridazine's effectiveness in vivo.RESULTS The expression of Skp2 exhibited a negative correlation with the sensitivity of HER2-positive GC cells to trastuzumab.Thioridazine demonstrated the ability to directly bind to Skp2,resulting in a reduction in Skp2 expression at both the transcriptional and translational levels.Moreover,thioridazine effectively inhibited cell proliferation,exhibited antiapoptotic properties,and decreased the glucose uptake rate and lactate production by suppressing Skp2/protein kinase B/mammalian target of rapamycin/glucose transporter type 1 signaling pathways.The combination of thioridazine with either trastuzumab or lapatinib exhibited a more pronounced anticancer effect in vivo,surpassing the efficacy of either monotherapy.CONCLUSION Thioridazine demonstrates promising outcomes in preclinical GC models and offers a novel therapeutic approach for addressing trastuzumab resistance,particularly when used in conjunction with lapatinib.This compound has potential benefits for patients with Skp2-proficient tumors.
基金Shanghai Medical Key Discipline Construction Foundation(05-Ⅲ-005-017).
文摘Background:XIAP-associated factor 1(XAF1)negatively regulates the function of the X-linked inhibitor of apoptosis protein(XIAP),a member of the IAP family that exerts antiapoptotic effects.The extracellular signal-regulated kinase(ERK)pathway is thought to increase cell proliferation and to protect cells from apoptosis.The aim of the study was to investigate the correlation between the ERK1/2 signaling pathway and XAF1 in colon cancer.Methods:Four human colon cancer cell lines,HCT1116 and Lovo(wildtype p53),DLD1 and SW1116(mutant p53),were used.Lovo stable transfectants with XAF1 sense and antisense were established.The effects of dominant-negative MEK1(DN-MEK1)and MEK-specific inhibitor U0126 on the ERK signaling pathway and expression of XAF1 and XIAP proteins were determined.The transcription activity of core XAF1 promoter was assessed by dual luciferase reporter assay.Cell proliferation was measured by MTT assay.Apoptosis was determined by Hoechst 33258 staining.Results:U0126 increased the expression of XAF1 in a time-and dose-dependent manner.A similar result was obtained in cells transfected with DN-MEK1 treatment.Conversely,the expression of XIAP was down-regulated.Activity of the putative promoter of the XAF1 gene was significantly increased by U0126 treatment and DN-MEK1 transient transfection.rhEGF-stimulated phosphorylation of ERK appeared to have little or no effect on XAF1 expression.Overexpression of XAF1 was more sensitive to U0126-induced apoptosis,whereas down-regulation of XAF1 by antisense reversed U0126-induced inhibition of cell proliferation.Conclusions:XAF1 expression was up-regulated by inhibition of the ERK1/2 pathway through transcriptional regulation,which required de novo protein synthesis.The results suggest that XAF1 mediates apoptosis induced by the ERK1/2 pathway in colon cancer.
基金supported by the National Natural Science Foundation of China,No.81130080,31300942the National Key Basic Research Program of China(973 Program)+5 种基金No.2014CB542202the Natural Science Foundation of Jiangsu Province,China,No.BK20150409the Natural Science Foundation of Jiangsu Higher Education Institutions of China,No.15KJB180013the Scientific Research Foundation of Nantong University of China,No.14R29the Natural Science Foundation of Nantong City in China,No.MS12015043the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘Tau, a primary component of microtubule-associated protein, promotes microtubule assembly and/or disassembly and maintains the stability of the microtubule structure. Although the importance of tau in neurodegenerative diseases has been well demonstrated, wheth- er tau is involved in peripheral nerve regeneration remains unknown. In the current study, we obtained sciatic nerve tissue from adult rats 0, 1, 4, 7, and 14 days after sciatic nerve crush and examined tau mRNA and protein expression levels and the location of tau in the sciatic nerve following peripheral nerve injury. The results from our quantitative reverse transcription polymerase chain reaction analysis showed that compared with the uninjured control sciatic nerve, mRNA expression levels for both tau and tau tubulin kinase 1, a serine/ threonine kinase that regulates tau phosphorylation, were decreased following peripheral nerve injury. Our western blot assay results suggested that the protein expression levels of tau and phosphorylated tau initially decreased 1 day post nerve injury but then gradually increased. The results of our immunohistochemical labeling showed that the location of tau protein was not altered by nerve injury. Thus, these results showed that the expression of tau was changed following sciatic nerve crush, suggesting that tau may be involved in periph- eral nerve repair and regeneration.
基金supported by the Natural Science Foundation of Shandong Province of China,No.ZR2015HM023a grant from the Science and Technology Plan Project of Shinan District of Qingdao City of China,No.2016-3-029-YY
文摘Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynamin-related protein 1 (Drp1) can trigger neuronal apoptosis following cerebral ischemia/reperfusion injury. Herein, we examined the hypothesis that electroacupuncture pretreatment can regulate Drp1, and thus inhibit mitochondrial fission to provide cerebral protection. Rat models of focal cerebral ischemia/reperfusion injury were established by middle cerebral artery occlusion at 24 hours after 5 consecutive days of preconditioning with electroacupuncture at GV20 (depth 2 mm, intensity 1 mA, frequency 2/15 Hz, for 30 minutes, once a day). Neurological function was assessed using the Longa neurological deficit score. Pathological changes in the ischemic penumbra on the injury side were assessed by hematoxylin-eosin staining. Cellular apoptosis in the ischemic penumbra on the injury side was assessed by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling staining. Mitochondrial ultrastructure in the ischemic penumbra on the injury side was assessed by transmission electron microscopy. Drp1 and cytochrome c expression in the ischemic penumbra on the injury side were assessed by western blot assay. Results showed that electroacupuncture preconditioning decreased expression of total and mitochondrial Drp1, decreased expression of total and cytosolic cytochrome c, maintained mitochondrial morphology and reduced the proportion of apoptotic cells in the ischemic penumbra on the injury side, with associated improvements in neurological function. These data suggest that electroacupuncture preconditioning-induced neuronal protection involves inhibition of the expression and translocation of Drp1.