Amorphous–microcrystalline MoS_(2)thin films are fabricated using the sol-gel method to produce MoS_(2)/Si-based solar cells. The generation mechanisms of the S-shaped current density–voltage(J–V) curves of the sol...Amorphous–microcrystalline MoS_(2)thin films are fabricated using the sol-gel method to produce MoS_(2)/Si-based solar cells. The generation mechanisms of the S-shaped current density–voltage(J–V) curves of the solar cells are analyzed. To improve the performance of the solar cells and address the problem of the S-shaped J–V curve, a MoS_(2)film and a p^(+) layer are introduced into the front and back interfaces of the solar cell, respectively, which leads to the formation of a p–n junction between the p-Si and the MoS_(2)film as well as ohmic contacts between the MoS_(2)film and the ITO, improving the S-shaped J–V curve. As a result of the high doping characteristics and the high work function of the p^(+) layer, a high–low junction is formed between the p;and p layers along with ohmic contacts between the p;layer and the Ag electrode. Consequently,the S-shaped J–V curve is eliminated, and a significantly higher current density is achieved at a high voltage. The device exhibits ideal p–n junction rectification characteristics and achieves a high power-conversion efficiency(CE) of 7.55%. The findings of this study may improve the application of MoS_(2)thin films in silicon-based solar cells, which are expected to be widely used in various silicon-based electronic and optical devices.展开更多
Using a driving simulator,the effects of Chinese chevrons on drivers’actual and perceived safe speeds at horizontal curves on two-lane rural highways are tested. Twelve horizontal curves with different roadway geomet...Using a driving simulator,the effects of Chinese chevrons on drivers’actual and perceived safe speeds at horizontal curves on two-lane rural highways are tested. Twelve horizontal curves with different roadway geometries are designed and used as the simulated scenarios.The results show that, regardless of the curve radius, chevrons at horizontal curves provide advance warning and speed control for vehicles on the nearside of chevrons.Besides,chevrons can be used as an addition to speed limit signs in preventing excessive speed at horizontal curves and, therefore, can contribute to a reduction in run-off-road crashes.Moreover, Chinese chevrons can also serve to provide an improved sense of safety while driving around sharp curves.These study results lay a foundation for setting Chinese chevrons more reasonably.展开更多
Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand ...Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand provided models for predicting operating speeds.However, less attention has been paid to multi-lane highwaysespecially in Egypt. In this research, field operatingspeed data of both cars and trucks on 78 curve sections offour multi-lane highways is collected. With the data, correlationbetween operating speed (V85) and alignment isanalyzed. The paper includes two separate relevant analyses.The first analysis uses the regression models toinvestigate the relationships between V85 as dependentvariable, and horizontal alignment and roadway factors asindependent variables. This analysis proposes two predictingmodels for cars and trucks. The second analysisuses the artificial neural networks (ANNs) to explore theprevious relationships. It is found that the ANN modelinggives the best prediction model. The most influential variableon V85 for cars is the radius of curve. Also, for V85 fortrucks, the most influential variable is the median width.Finally, the derived models have statistics within theacceptable regions and they are conceptually reasonable.展开更多
The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was de...The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was determined by considering the maximum extrusion load and production efficiency.By taking the optimal solution temperature of the secondary phase as the target temperature,the extrusion speed–stroke curve for realizing the isothermal extrusion of the aluminium profile was obtained.Results show that in the traditional constant extrusion speed process,the average temperature of the cross-section of the aluminium profile at the die exit rapidly increases and then slowly rises with the increase in ram displacement.As the extrusion speed increases,the temperature difference at the die exit of the profile along the extrusion direction increases.The exit temperature difference between the front and back ends of the extrudate along the extrusion direction obtained by adopting isothermal extrusion is about 6.9℃.Furthermore,the heat generated by plastic deformation and friction during extrusion is balanced with the heat transfer from the workpiece to the container,porthole die and external environment.展开更多
A large number of crashes occur on curves even though they account for only a small percentage of a system’s mileage. Excessive speed has been identified as a primary factor in both lane departure and curve-related c...A large number of crashes occur on curves even though they account for only a small percentage of a system’s mileage. Excessive speed has been identified as a primary factor in both lane departure and curve-related crashes. A number of countermeasures have been proposed to reduce driver speeds on curves, which ideally result in successful curve negotiation and fewer crashes. Dynamic speed feedback sign (DSFS) systems are traffic control devices that have been used to reduce vehicle speeds successfully and, subsequently, crashes in applications such as traffic calming on urban roads. DSFS systems show promise, but they have not been fully evaluated for rural curves. To better understand the effectiveness of DSFS systems in reducing crashes on curves, a national field evaluation of DSFS systems on curves on rural two lane roadways was conducted. Two different DSFS systems were selected and placed at 22 sites in seven states. Control sites were also identified. A full Bayes modeling methodology was utilized to develop crash modification factors (CMFs) for several scenarios including total crashes for both directions, total crashes in the direction of the sign, total single-vehicle crashes, and single-vehicle crashes in the direction of the sign. Using quarterly crash frequency as the response variable, crash modification factors were developed and results showed that crashes were 5% to 7% lower after installation of the signs depending on the model.展开更多
Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(...Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(MC), point of tangent(PT) and 50 m beyond PT on four-lane median divided rural highways. The car and SUV speed data were combined in the analysis as they were found to be normally distributed and not significantly different. Independent parameters representing geometric features and speed at the preceding section were logically selected in stepwise regression analyses to develop the models. Speeds at various locations were found to be dependent on some combinations of curve length, curvature and speed in the immediately preceding section of the highway. Curve length had a significant effect on the speed at locations 50 m prior to PC, PC and MC. The effect of curvature on speed was observed only at MC. The curve geometry did not have a significant effect on speed from PT onwards. The speed at 50 m prior to PC and curvature is the most significant parameter that affects the speed at PC and MC, respectively. Before entering a horizontal curve, drivers possibly perceive the curve based on its length. Longer curve encourages drivers to maintain higher speed in the preceding tangent section. Further, drivers start experiencing the effect of curvature only after entering the curve and adjust speed accordingly. Practitioners can use these findings in designing consistent horizontal curve for vehicle speed harmony.展开更多
To avoid suffering gouge and transient overshooting in high speed cutting machining, a novel parametefized curve interpolator model with velocity look-ahead algorithm is proposed. Based on a prearrangement step interp...To avoid suffering gouge and transient overshooting in high speed cutting machining, a novel parametefized curve interpolator model with velocity look-ahead algorithm is proposed. Based on a prearrangement step interpolation algorithm for parameterized curves and considering high curvature points, parameterized curve tool path is divided into acceleration segments and deceleration segments by look-ahead algorithm. Under condition of characteristics of acceleration and deceleration stored in control system, deceleration before high curvature points and acceleration after high curvature points are realized in real-time in high speed cutting machining. Based on new parameterized curve interpolator model with velocity look-ahead algorithm, a real cubic spline is machined simulativly. The simulation results show that velocity look-ahead algorithm improves velocity changing more smoothly.展开更多
The problem of parametric speed approximation of a rational curve is raised in this paper. Offset curves are widely used in various applications. As for the reason that in most cases the offset curves do not preserve ...The problem of parametric speed approximation of a rational curve is raised in this paper. Offset curves are widely used in various applications. As for the reason that in most cases the offset curves do not preserve the same polynomial or rational polynomial representations, it arouses difficulty in applications. Thus approximation methods have been introduced to solve this problem. In this paper, it has been pointed out that the crux of offset curve approximation lies in the approximation of parametric speed. Based on the Jacobi polynomial approximation theory with endpoints interpolation, an algebraic rational approximation algorithm of offset curve, which preserves the direction of normal, is presented.展开更多
The minimum curve radius is one of the most important factors in railway route design. The minimum curve radius of the Hainan East Ring Railway, a newly built high-speed passenger-dedicated line from Haikou to Sanya, ...The minimum curve radius is one of the most important factors in railway route design. The minimum curve radius of the Hainan East Ring Railway, a newly built high-speed passenger-dedicated line from Haikou to Sanya, Hainan, China, was determined through comparative analysis of the design codes both in China and Germany. The results show that the design parameters of the Hainan East Ring Railway in terms of the minimum curve radius determined by China's Temporary Regulations, conform to the ones by German code, and even preserve some capacity for speeds up to 300 km/h in the future. Additionally, the related counter- measures for speed increases in this line were proposed on the premise of the safety and riding comfort of the trains.展开更多
基金Project supported by the Science and Technology Research Project of Hebei Province Colleges and Universities (Grant No. QN2020113)Tangshan Applied Basic Research Project (Grant No. 19130227g)。
文摘Amorphous–microcrystalline MoS_(2)thin films are fabricated using the sol-gel method to produce MoS_(2)/Si-based solar cells. The generation mechanisms of the S-shaped current density–voltage(J–V) curves of the solar cells are analyzed. To improve the performance of the solar cells and address the problem of the S-shaped J–V curve, a MoS_(2)film and a p^(+) layer are introduced into the front and back interfaces of the solar cell, respectively, which leads to the formation of a p–n junction between the p-Si and the MoS_(2)film as well as ohmic contacts between the MoS_(2)film and the ITO, improving the S-shaped J–V curve. As a result of the high doping characteristics and the high work function of the p^(+) layer, a high–low junction is formed between the p;and p layers along with ohmic contacts between the p;layer and the Ag electrode. Consequently,the S-shaped J–V curve is eliminated, and a significantly higher current density is achieved at a high voltage. The device exhibits ideal p–n junction rectification characteristics and achieves a high power-conversion efficiency(CE) of 7.55%. The findings of this study may improve the application of MoS_(2)thin films in silicon-based solar cells, which are expected to be widely used in various silicon-based electronic and optical devices.
基金The National Natural Science Foundation of China(No.51108011)
文摘Using a driving simulator,the effects of Chinese chevrons on drivers’actual and perceived safe speeds at horizontal curves on two-lane rural highways are tested. Twelve horizontal curves with different roadway geometries are designed and used as the simulated scenarios.The results show that, regardless of the curve radius, chevrons at horizontal curves provide advance warning and speed control for vehicles on the nearside of chevrons.Besides,chevrons can be used as an addition to speed limit signs in preventing excessive speed at horizontal curves and, therefore, can contribute to a reduction in run-off-road crashes.Moreover, Chinese chevrons can also serve to provide an improved sense of safety while driving around sharp curves.These study results lay a foundation for setting Chinese chevrons more reasonably.
文摘Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand provided models for predicting operating speeds.However, less attention has been paid to multi-lane highwaysespecially in Egypt. In this research, field operatingspeed data of both cars and trucks on 78 curve sections offour multi-lane highways is collected. With the data, correlationbetween operating speed (V85) and alignment isanalyzed. The paper includes two separate relevant analyses.The first analysis uses the regression models toinvestigate the relationships between V85 as dependentvariable, and horizontal alignment and roadway factors asindependent variables. This analysis proposes two predictingmodels for cars and trucks. The second analysisuses the artificial neural networks (ANNs) to explore theprevious relationships. It is found that the ANN modelinggives the best prediction model. The most influential variableon V85 for cars is the radius of curve. Also, for V85 fortrucks, the most influential variable is the median width.Finally, the derived models have statistics within theacceptable regions and they are conceptually reasonable.
基金the financial supports from the National Natural Science Foundation of China(No.52005244)the Scientific Research Fund of Hunan Provincial Education Department,China(Nos.18B285,18B552)+1 种基金the Natural Science Foundation of Hunan Provincial,China(Nos.2019JJ50510,2019JJ70077)Young Scholars Program of Furong Scholar Program,China.
文摘The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was determined by considering the maximum extrusion load and production efficiency.By taking the optimal solution temperature of the secondary phase as the target temperature,the extrusion speed–stroke curve for realizing the isothermal extrusion of the aluminium profile was obtained.Results show that in the traditional constant extrusion speed process,the average temperature of the cross-section of the aluminium profile at the die exit rapidly increases and then slowly rises with the increase in ram displacement.As the extrusion speed increases,the temperature difference at the die exit of the profile along the extrusion direction increases.The exit temperature difference between the front and back ends of the extrudate along the extrusion direction obtained by adopting isothermal extrusion is about 6.9℃.Furthermore,the heat generated by plastic deformation and friction during extrusion is balanced with the heat transfer from the workpiece to the container,porthole die and external environment.
文摘A large number of crashes occur on curves even though they account for only a small percentage of a system’s mileage. Excessive speed has been identified as a primary factor in both lane departure and curve-related crashes. A number of countermeasures have been proposed to reduce driver speeds on curves, which ideally result in successful curve negotiation and fewer crashes. Dynamic speed feedback sign (DSFS) systems are traffic control devices that have been used to reduce vehicle speeds successfully and, subsequently, crashes in applications such as traffic calming on urban roads. DSFS systems show promise, but they have not been fully evaluated for rural curves. To better understand the effectiveness of DSFS systems in reducing crashes on curves, a national field evaluation of DSFS systems on curves on rural two lane roadways was conducted. Two different DSFS systems were selected and placed at 22 sites in seven states. Control sites were also identified. A full Bayes modeling methodology was utilized to develop crash modification factors (CMFs) for several scenarios including total crashes for both directions, total crashes in the direction of the sign, total single-vehicle crashes, and single-vehicle crashes in the direction of the sign. Using quarterly crash frequency as the response variable, crash modification factors were developed and results showed that crashes were 5% to 7% lower after installation of the signs depending on the model.
基金Indian Institute of Technology Bombay for providing funding (Project code:13IRCCSG001)
文摘Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(MC), point of tangent(PT) and 50 m beyond PT on four-lane median divided rural highways. The car and SUV speed data were combined in the analysis as they were found to be normally distributed and not significantly different. Independent parameters representing geometric features and speed at the preceding section were logically selected in stepwise regression analyses to develop the models. Speeds at various locations were found to be dependent on some combinations of curve length, curvature and speed in the immediately preceding section of the highway. Curve length had a significant effect on the speed at locations 50 m prior to PC, PC and MC. The effect of curvature on speed was observed only at MC. The curve geometry did not have a significant effect on speed from PT onwards. The speed at 50 m prior to PC and curvature is the most significant parameter that affects the speed at PC and MC, respectively. Before entering a horizontal curve, drivers possibly perceive the curve based on its length. Longer curve encourages drivers to maintain higher speed in the preceding tangent section. Further, drivers start experiencing the effect of curvature only after entering the curve and adjust speed accordingly. Practitioners can use these findings in designing consistent horizontal curve for vehicle speed harmony.
基金Special Project for Key Mechatronic Equipment of Zhejiang Province,China (No.2006Cl1067)Science & Technology Project of Zhejiang Province,China (No. 2005E10049)
文摘To avoid suffering gouge and transient overshooting in high speed cutting machining, a novel parametefized curve interpolator model with velocity look-ahead algorithm is proposed. Based on a prearrangement step interpolation algorithm for parameterized curves and considering high curvature points, parameterized curve tool path is divided into acceleration segments and deceleration segments by look-ahead algorithm. Under condition of characteristics of acceleration and deceleration stored in control system, deceleration before high curvature points and acceleration after high curvature points are realized in real-time in high speed cutting machining. Based on new parameterized curve interpolator model with velocity look-ahead algorithm, a real cubic spline is machined simulativly. The simulation results show that velocity look-ahead algorithm improves velocity changing more smoothly.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312101) and the National Natural Science Foun-dation of China (Nos. 60373033 and 60333010)
文摘The problem of parametric speed approximation of a rational curve is raised in this paper. Offset curves are widely used in various applications. As for the reason that in most cases the offset curves do not preserve the same polynomial or rational polynomial representations, it arouses difficulty in applications. Thus approximation methods have been introduced to solve this problem. In this paper, it has been pointed out that the crux of offset curve approximation lies in the approximation of parametric speed. Based on the Jacobi polynomial approximation theory with endpoints interpolation, an algebraic rational approximation algorithm of offset curve, which preserves the direction of normal, is presented.
文摘The minimum curve radius is one of the most important factors in railway route design. The minimum curve radius of the Hainan East Ring Railway, a newly built high-speed passenger-dedicated line from Haikou to Sanya, Hainan, China, was determined through comparative analysis of the design codes both in China and Germany. The results show that the design parameters of the Hainan East Ring Railway in terms of the minimum curve radius determined by China's Temporary Regulations, conform to the ones by German code, and even preserve some capacity for speeds up to 300 km/h in the future. Additionally, the related counter- measures for speed increases in this line were proposed on the premise of the safety and riding comfort of the trains.