Objective:To determine the genetic diversity of Plasmodium(P.)knowlesi isolates from Sabah,Malaysian Borneo and Peninsular Malaysia,targeting the S-type SSU rRNA gene and including aspects of natural selection and hap...Objective:To determine the genetic diversity of Plasmodium(P.)knowlesi isolates from Sabah,Malaysian Borneo and Peninsular Malaysia,targeting the S-type SSU rRNA gene and including aspects of natural selection and haplotype.Methods:Thirty-nine blood samples infected with P.knowlesi were collected in Sabah,Malaysian Borneo and Peninsular Malaysia.The S-type SSU rRNA gene was amplified using polymerase chain reaction,cloned into a vector,and sequenced.The natural selection and haplotype of the S-type SSU rRNA gene sequences were determined using DnaSP v6 and illustrated using NETWORK v10.This study's 39 S-type SSU rRNA sequences and eight sequences from the Genbank database were subjected to phylogenetic analysis using MEGA 11.Results:Overall,the phylogenetic analysis showed no evidence of a geographical cluster of P.knowlesi isolates from different areas in Malaysia based on the S-type SSU rRNA gene sequences.The S-type SSU rRNA gene sequences were relatively conserved and with a purifying effect.Haplotype sharing of the S-type SSU rRNA gene was observed between the P.knowlesi isolates in Sabah,Malaysian Borneo,but not between Sabah,Malaysian Borneo and Peninsular Malaysia.Conclusions:This study suggests that the S-type SSU rRNA gene of P.knowlesi isolates in Sabah,Malaysian Borneo,and Peninsular Malaysia has fewer polymorphic sites,representing the conservation of the gene.These features make the S-type SSU rRNA gene suitable for comparative studies,such as determining the evolutionary relationships and common ancestry among P.knowlesi species.展开更多
Fiber cladding surface plasmon resonance(SPR)sensors have few structures,and a clad SPR sensor based on S-type fiber is proposed in this paper.This new type of fiber cladding SPR sensor was formed by electrofusing an ...Fiber cladding surface plasmon resonance(SPR)sensors have few structures,and a clad SPR sensor based on S-type fiber is proposed in this paper.This new type of fiber cladding SPR sensor was formed by electrofusing an S-shaped structure on the fiber to couple the light in the fiber core to the cladding.In this paper,the effects of fiber parameters on the performance of the sensor were studied by simulation and experiment.Based on the conclusion that the smaller the core diameter is,the closer the working band of the SPR resonance is to long wavelengths,and that the geometric characteristics mean that a multimode fiber can receive the fiber cladding light from a small core diameter few-mode fiber,a dual channel SPR sensor with a double S-type fiber cascade was proposed.In the refractive index detection range of 1.333–1.385refractive index units(RIU),the resonant working band of channel I is 627.66 nm–759.78 nm,with an average sensitivity of 2540.77 nm/RIU,and the resonant working band of channel II is 518.24 nm–658.2 nm,with an average sensitivity of2691.54 nm/RIU.The processing method for the S-type fiber cladding SPR sensor is simple,effectively solving the problem of this type of SPR sensor structure and the difficult realization of a dual channel.The sensor is expected to be used in the fields of medical treatment and biological analysis.展开更多
The Pengshan Sn-polymetallic ore field is located in the southeastern part of the Yangtze block,spanning the southeast edge of the MLYDZ and the northern edge of the mid-segment of the Jiangnan Uplift,and on one side ...The Pengshan Sn-polymetallic ore field is located in the southeastern part of the Yangtze block,spanning the southeast edge of the MLYDZ and the northern edge of the mid-segment of the Jiangnan Uplift,and on one side of the MLYDZ.The studies of LA-ICP-MS zircon U-Pb chronology and petrogeochemistry for Early Cretaceous acid granites from the Pengshan ore field were carried out in this paper.We report zircon U-Pb geochronology and whole-rock geochemistry for acid granites in the Pengshan ore field.The zircon U-Pb ages of the muscovite-granite,biotite adamellite and granite-porphyry are 127.6±1.7 Ma,126.9±1.6 Ma and 126.6±2.0 Ma,respectively.The granites in Pengshan are characterized by a high silicon content and are rich in alkali.They belong to high-potassium,calc-alkaline,peraluminous granite.The rocks have a relatively high Rb/Ba ratio,and the data points for muscovite-granite and biotite adamellite all fall within the clay-rich sources region,near the pelite-derived end-member,showing that the Pengshan muscovite-granite and biotite adamellite mainly originated from the partial melting of metapelites with high maturity.The transformation of the compressional and extensional tectonics in this region approximately 128 Ma obviously lags behind that in the mid-segment of the Jiangnan Uplift(135 Ma),but occurred earlier than the MLYDZ(126 Ma).The Pengshan ore field extends from the mid-segment of the Jiangnan Uplift to the MLYDZ.Although the tectonic stress field is constrained by the combination of the two secondary tectonic units,the time of tectonic system transformation is closer to the MLYDZ because the spatial orientation of the area is enclosed in the MLYDZ.Relevant geophysical and drilling data confirm the rationality of Pengshan-Ao'xia as a multi-center vertical zoning ore field,and show the scientificity of the prospecting idea of abutting joint between the north-west of Pengshan area and the south-east of Ao'xia area.展开更多
1 Introduction Hetai district,which is a mountainous area,situated on Guangning and Zhaoqing city,west Guangdong Province.Hetai district is generally located on southwest of South China Caledonian fold belt,east margi...1 Introduction Hetai district,which is a mountainous area,situated on Guangning and Zhaoqing city,west Guangdong Province.Hetai district is generally located on southwest of South China Caledonian fold belt,east margin of Yunkai post-Caledonian uplift.Multiple type granites are widely distributed in Hetai district,including Caledonian,Indosinian and Yanshanian granites.Based on different展开更多
The effects of Sonic hedgehog(Shh) signaling pathway activation on S-type neuroblastoma(NB) cell lines and its role in NB tumorigenesis were investigated.Immunohistochemistry was used to detect the expression of Shh p...The effects of Sonic hedgehog(Shh) signaling pathway activation on S-type neuroblastoma(NB) cell lines and its role in NB tumorigenesis were investigated.Immunohistochemistry was used to detect the expression of Shh pathway components— Patched1(PTCH1) and Gli1 in 40 human primary NB samples.Western blotting and RT-PCR were used to examine the protein expression and mRNA levels of PTCH1 and Gli1 in three kinds of S-type NB cell lines(SK-N-AS,SK-N-SH and SHEP1),respectively.Exogenous Shh was administrated to activate Shh signaling pathway while cyclopamine was used as a selective antagonist of Shh pathway.S-type NB cell lines were treated with different concentrations of Shh or/and cyclopamine for different durations.Cell viability was measured by using MTT method.Apoptosis rate and cell cycle were assayed by flow cytometry.The xenograft experiments were used to evaluate the role of Shh pathway in tumor growth in immunodeficient mice.High-level expression of PTCH1 and Gli1 was detected in both NB samples and S-type NB cell lines.Cyclopamine decreased the survival rate of the three cell lines while Shh increased it,and the inhibition effects of cyclopamine could be partially reversed by shh pre-treatment.Cyclopamine induced the cell apoptosis and the cell cycle arrest in G0/G1 phase,while Shh induced the reverse effects and could partially prevent effects of cyclopamine.Cyclopamine could also inhibit the growth of NB in vivo.Our studies revealed that activation of the Shh pathway is important for survival and proliferation of S-type NB cells in vivo and in vitro through affecting cell apoptosis and cell cycle,suggesting a new therapeutic approach to NB.展开更多
The Shicaogou granite has been identified as a magnesian (Fe-number=0.71-0.76), calcic to calc-alkalic (MALI=3.84-5.76) and peraluminous (ASI=1.06-1.13) granite of the syn-collisional S-type, with high SiO2(>71%), ...The Shicaogou granite has been identified as a magnesian (Fe-number=0.71-0.76), calcic to calc-alkalic (MALI=3.84-5.76) and peraluminous (ASI=1.06-1.13) granite of the syn-collisional S-type, with high SiO2(>71%), A12O3 (>13%) and Na2O+K2O (6.28%-7.33%, equal for NaO2 and K2O). Trace element and REE analyses show that the granite is rich in LILE such as of Rb, Sr, Ba and Th, and poor in HFSE like Yb, Y, Zr and Hf. Its Rb/Sr ratio is greater than 1; the contents of Nb and Ta, and the ratio of Nb/Ta as well as the REE geochemical features (e.g. REE abundance, visible fractionation of LREE and HREE and medium to pronounced negative Eu anomalies) are all similar to those of crust-origin, continent-continent syn-collisional granite. Moreover, the granite exhibits almost the same pattern as that of the typical continent-continent syn-collisional granite on the spider diagram and all samples fall within the syn-collisional granite field.The cathodoluminescence (CL) investigations have revealed that the zircon from the Shicaogou granite represents a typical magmatic product characterized by its colorless, transparent and euhedral crystals, and distinct zoning of oscillatory bands. Residual cores of irregular zircon can be found in a few enhedral grains. Trace element studies of the zircon grains, with high contents of P, Y, Hf, Th, U and REE and high ratios of Th/U, obviously positive Ce anomalies and HREE enrichment compared to LREE, also result in the same conclusion.The LA-ICP-MS U-Pb isotopic data from 24 spots of 21 zircon grains demonstrate that 20 spots in the oscillatory zone yield an average weighted 206Pb/238U age of 925±11 Ma, indicating that the Shicaogou granite was formed in the Neoproterozoic. Combined with other Neoproterozoic syn-collisional granites found in the study area, the present geochronological determination can further reveal that collision-amalgamation events could have occurred among some continental blocks in the Qinling orogenic belt during the Neoproterozoic. This in turn provides an accurate chronological constraint on the Neoproterozoic break-up and convergence in the belt.展开更多
In the western Yangtze Block, widespread Mesoproterozoic to Neoproterozoic rocks are the key to understanding the Precambrian tectonic-magmatic evolution of the region. However, their petrogenesis and tectonic setting...In the western Yangtze Block, widespread Mesoproterozoic to Neoproterozoic rocks are the key to understanding the Precambrian tectonic-magmatic evolution of the region. However, their petrogenesis and tectonic setting are still controversial. In this paper, zircon U-Pb ages, Sm-Nd isotopic and whole-rock geochemical data are reported from selected fresh samples in the southern Dechang county, southwestern China, in order to constrain their emplacement age and magma source, as well as their petrogenesis and tectonic setting. They are mainly composed of biotite monzogranite, monzonitic granite, biotite granodiorites, and quartz diorite. Two ages of 1055 ± 43 Ma and 837.6 ± 3.8 Ma were obtained through zircon U-Pb dating by LA-ICP-MS and LA-MC-ICP-MS, respectively. According to their major element compositions, the Grenville-age granites are peraluminous calc-alkaline series calcic S-type granite. In contrast, the mid-Neoproterozoic granites are metaluminous calc-aikaline series alkalic I-type granite. Furthermore, the S-type granites are enriched in LREEs relative to HREEs with (La/Yb)N ratios of 3.85-18.56 and underwent major fractionation with strongly negative Eu anomalies (Eu/Eu* = 0.38-0.66). In the MORB-normalized trace element variation diagram, all the samples are enriched in Ce and large ion lithophile elements such as Rb, Th, and K, and depleted in high field strength elements such as Nb, and Ti, with negative Sr and Ti anomalies. The I-type granites are enriched in LREEs with slight negative Eu anomalies (Eu/Eu*= 0.83-0.93). They are characterized by the enrichment of highly incompatible elements (such as K, Rb, Ba, Th) and LREEs, relative to MORB. Neodymium isotopic data show that the S-type granites display 143Nd/144Nd values of 0.51241-0.51256, and have eNa (t = 1055 Ma) values of (-3.29) to (-3.81). Calculated tDM ages yield values from 1.87 to 1.91 Ga with the tDM.2stg ages of 1.86 to 1.9 Ga. The I-type granites have 143Nd/144Nd ratios between 0.51192 and 0.51195, corresponding to initial eNd (t = 837 Ma) values of 1.22 to 5.63. Calculated tDM ages yield values from 1.0 to 1.38 Ga and the tDM.2stg ages yield values from 0.99 to 1.06 Ga. The S-type granites are distinguished as syn-collision granite, whereas the I-type granites were formed as arc magmas according to the Rb-(Yb+Ta) and R1-R2 tectonic discrimination diagrams. To conclude, there are two types of spatially associated granite, the Mesoproterozoic S-type granite which were derived from re- melting of upper crustal mudstone and/or clastics and resulted from the convergence of two continental plates, and the mid-Neoproterozoic I-type granite which formed in continental arc and resulted from mantle-derived magma mixed crust material, in the western Yangtze Block. Furthermore, we suggest that collision between the Yangtze and Cathaysia blocks occurred at about 1055 Ma, and caused the S- type granite. The I-type granite related to the subduction of oceanic lithosphere eastward underneath the Yangtze Block in the mid-Neoproterozoic.展开更多
Late Hercynian-early Indosinian (Triassic) granite is widely distributed around the Taer region of the northern margin of West Kunlun. The rock mass is mainly composed of calc-alkaline porphyroid biotite adamellite ...Late Hercynian-early Indosinian (Triassic) granite is widely distributed around the Taer region of the northern margin of West Kunlun. The rock mass is mainly composed of calc-alkaline porphyroid biotite adamellite and characterized by SiO2-rich, high-Ca, moderate-alkaline, and strongly peraluminous attributes, and relatively low ~REE with LREE enrichment and a moderate Eu anomaly. As shown in the trace element spider web diagram, distinct peaks appear for Th, La, Nd, and Zr and clearly low values appear for Ba, Nb, Sr, P, and Ti. Further, compared with the primitive mantle, Rb/Sr and Rb/Ba are considerably higher and Nd/Th and Nb/Ta are relative low, all falling into the scope of the crust-origin rocks, indicating the characteristics of the crust-origin S-type granite. The rock mass's zircon U-Pb isotopic age is determined to be 235.7 -~ 3.9 Ma. On the basis of the age data, spatio-temporal location, lithology, and geochemistry of the rock mass, we conclude that the formation of the rock mass is closely related to the strong compressional orogenic movement (240 Ma) of the Tianshuihai terrane and the South Kunlun terrane. The rock mass is the product of the collision orogenic movement. However, distinct differences are observed between the studied rock mass and the synorogenic Bulunkou rock mass, which may be caused by the different collision strength and different positions with respect to the collision zone.展开更多
The Pamir plateau may have been a westward continuation of Tibet plateau.Meanwhile,the Rushan-Pshart suture is correlative to the Bangong-Nujiang suture of Tibet,and the Central Pamir is the lateral equivalent of the ...The Pamir plateau may have been a westward continuation of Tibet plateau.Meanwhile,the Rushan-Pshart suture is correlative to the Bangong-Nujiang suture of Tibet,and the Central Pamir is the lateral equivalent of the Qiangtang Block.We present the first detailed LA-ICPMS zircon U-Pb chronology,major and trace element,and Lu-Hf isotope geochemistry of Taxkorgan two-mica monzogranite to illuminate the Tethys evolution in central Pamir.LA-ICPMS zircon U-Pb dating shows that two-mica monzogranite is emplaced in the Cretaceous(118 Ma).Its geochemical features are similar to S-type granite,with enrichment in LREEs and negative Ba,Sr,Zr and Ti anomalies.All the samples show negative zirconεHf(t)values ranging from 17.0 to 12.5(mean 14.5),corresponding to crustal Hf model(TDM2)ages of 1906 to 2169 Ma.It is inferred that these granitoids are derived from partial melting of peliticmetasedimentary rocks analogous to the Paleoproterozoic Bulunkuole Group,predominantly with muscovite schists component.Based on the petrological and geochemical data presented above,together with the regional geology,this work provides new insights that Bangong Nujiang Ocean closed in Early Cretaceous(120114 Ma).展开更多
To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and a...To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly.展开更多
The Paleoproterozoic tectonic evolution of the Bangweulu Block has long been controversial.Paleoproterozoic granites consisting of the basement complex of the Bangweulu Block are widely exposed in northeastern Zambia,...The Paleoproterozoic tectonic evolution of the Bangweulu Block has long been controversial.Paleoproterozoic granites consisting of the basement complex of the Bangweulu Block are widely exposed in northeastern Zambia,and they are the critical media for studying the tectonic evolution of the Bangweulu Block.This study systematically investigated the petrography,zircon U-Pb chronology,and petrogeochemistry of the granitoid extensively exposed in the Lunte area,northeastern Zambia.The results show that the granitoid in the area formed during 2051±13-2009±20 Ma as a result of Paleoproterozoic magmatic events.Geochemical data show that the granites in the area mainly include syenogranites and monzogranites of high-K calc-alkaline series and are characterized by high SiO2 content(72.68%‒73.78%)and K_(2)O/Na_(2)O ratio(1.82‒2.29).The presence of garnets,the high aluminum saturation index(A/CNK is 1.13‒1.21),and the 1.27%‒1.95%of corundum molecules jointly indicate that granites in the Lunte area are S-type granites.Rare earth elements in all samples show a rightward inclination and noticeably negative Eu-anomalies(δEu=0.16‒0.40)and are relatively rich in light rare earth elements.Furthermore,the granites are rich in large ion lithophile elements such as Rb,Th,U,and K and are depleted in Ba,Sr,and high field strength elements such as Ta and Nb.In addition,they bear low contents of Cr(6.31×10^(−6)‒10.8×10^(−6)),Ni(2.87×10^(−6)‒4.76×10^(−6)),and Co(2.62×10^(−6)‒3.96×10^(−6)).These data lead to the conclusion that the source rocks are meta-sedimentary rocks.Combining the above results and the study of regional tectonic evolution,the authors suggest that granitoid in the Lunte area were formed in a tectonic environment corresponding to the collision between the Tanzania Craton and the Bangweulu Block.The magmatic activities in this period may be related to the assembly of the Columbia supercontinent.展开更多
基金This study was supported by the Ministry of Higher Education,Malaysia(FRGS0322-SG-1/2013)Universiti Malaysia Sabah(GUG0521-2/2020).
文摘Objective:To determine the genetic diversity of Plasmodium(P.)knowlesi isolates from Sabah,Malaysian Borneo and Peninsular Malaysia,targeting the S-type SSU rRNA gene and including aspects of natural selection and haplotype.Methods:Thirty-nine blood samples infected with P.knowlesi were collected in Sabah,Malaysian Borneo and Peninsular Malaysia.The S-type SSU rRNA gene was amplified using polymerase chain reaction,cloned into a vector,and sequenced.The natural selection and haplotype of the S-type SSU rRNA gene sequences were determined using DnaSP v6 and illustrated using NETWORK v10.This study's 39 S-type SSU rRNA sequences and eight sequences from the Genbank database were subjected to phylogenetic analysis using MEGA 11.Results:Overall,the phylogenetic analysis showed no evidence of a geographical cluster of P.knowlesi isolates from different areas in Malaysia based on the S-type SSU rRNA gene sequences.The S-type SSU rRNA gene sequences were relatively conserved and with a purifying effect.Haplotype sharing of the S-type SSU rRNA gene was observed between the P.knowlesi isolates in Sabah,Malaysian Borneo,but not between Sabah,Malaysian Borneo and Peninsular Malaysia.Conclusions:This study suggests that the S-type SSU rRNA gene of P.knowlesi isolates in Sabah,Malaysian Borneo,and Peninsular Malaysia has fewer polymorphic sites,representing the conservation of the gene.These features make the S-type SSU rRNA gene suitable for comparative studies,such as determining the evolutionary relationships and common ancestry among P.knowlesi species.
基金the National Natural Science Foundation of China(Grant No.61705025)Chongqing Natural Science Foundation(Grant Nos.cstc2019jcyjmsxmX0431 and cstc2018jcyjAX0817)+2 种基金the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality(Grant Nos.KJQN201801217,KJQN201901226,KJQN202001214,and KJ1710247)Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area(Grant Nos.ZD2020A0103 and ZD2020A0102)Fundamental Research Funds for Chongqing Three Gorges University of China(Grant No.19ZDPY08).
文摘Fiber cladding surface plasmon resonance(SPR)sensors have few structures,and a clad SPR sensor based on S-type fiber is proposed in this paper.This new type of fiber cladding SPR sensor was formed by electrofusing an S-shaped structure on the fiber to couple the light in the fiber core to the cladding.In this paper,the effects of fiber parameters on the performance of the sensor were studied by simulation and experiment.Based on the conclusion that the smaller the core diameter is,the closer the working band of the SPR resonance is to long wavelengths,and that the geometric characteristics mean that a multimode fiber can receive the fiber cladding light from a small core diameter few-mode fiber,a dual channel SPR sensor with a double S-type fiber cascade was proposed.In the refractive index detection range of 1.333–1.385refractive index units(RIU),the resonant working band of channel I is 627.66 nm–759.78 nm,with an average sensitivity of 2540.77 nm/RIU,and the resonant working band of channel II is 518.24 nm–658.2 nm,with an average sensitivity of2691.54 nm/RIU.The processing method for the S-type fiber cladding SPR sensor is simple,effectively solving the problem of this type of SPR sensor structure and the difficult realization of a dual channel.The sensor is expected to be used in the fields of medical treatment and biological analysis.
基金supported by China Geological Survey Development Research Center Program(Grant No.DD2016005234)Geological exploration fund Program of Jiangxi Province(Grant No.20160010)Jiangxi Bureau of Geology&Mineral Exploration Program(Grant No.201698)。
文摘The Pengshan Sn-polymetallic ore field is located in the southeastern part of the Yangtze block,spanning the southeast edge of the MLYDZ and the northern edge of the mid-segment of the Jiangnan Uplift,and on one side of the MLYDZ.The studies of LA-ICP-MS zircon U-Pb chronology and petrogeochemistry for Early Cretaceous acid granites from the Pengshan ore field were carried out in this paper.We report zircon U-Pb geochronology and whole-rock geochemistry for acid granites in the Pengshan ore field.The zircon U-Pb ages of the muscovite-granite,biotite adamellite and granite-porphyry are 127.6±1.7 Ma,126.9±1.6 Ma and 126.6±2.0 Ma,respectively.The granites in Pengshan are characterized by a high silicon content and are rich in alkali.They belong to high-potassium,calc-alkaline,peraluminous granite.The rocks have a relatively high Rb/Ba ratio,and the data points for muscovite-granite and biotite adamellite all fall within the clay-rich sources region,near the pelite-derived end-member,showing that the Pengshan muscovite-granite and biotite adamellite mainly originated from the partial melting of metapelites with high maturity.The transformation of the compressional and extensional tectonics in this region approximately 128 Ma obviously lags behind that in the mid-segment of the Jiangnan Uplift(135 Ma),but occurred earlier than the MLYDZ(126 Ma).The Pengshan ore field extends from the mid-segment of the Jiangnan Uplift to the MLYDZ.Although the tectonic stress field is constrained by the combination of the two secondary tectonic units,the time of tectonic system transformation is closer to the MLYDZ because the spatial orientation of the area is enclosed in the MLYDZ.Relevant geophysical and drilling data confirm the rationality of Pengshan-Ao'xia as a multi-center vertical zoning ore field,and show the scientificity of the prospecting idea of abutting joint between the north-west of Pengshan area and the south-east of Ao'xia area.
基金co-funded by the China Geological Survey (No.12120114052801)the DREAM project of MOST, China (NO. 2016YFC0600401)
文摘1 Introduction Hetai district,which is a mountainous area,situated on Guangning and Zhaoqing city,west Guangdong Province.Hetai district is generally located on southwest of South China Caledonian fold belt,east margin of Yunkai post-Caledonian uplift.Multiple type granites are widely distributed in Hetai district,including Caledonian,Indosinian and Yanshanian granites.Based on different
基金supported by a grant from the National Natural Sciences Foundation of China (No.30600189)
文摘The effects of Sonic hedgehog(Shh) signaling pathway activation on S-type neuroblastoma(NB) cell lines and its role in NB tumorigenesis were investigated.Immunohistochemistry was used to detect the expression of Shh pathway components— Patched1(PTCH1) and Gli1 in 40 human primary NB samples.Western blotting and RT-PCR were used to examine the protein expression and mRNA levels of PTCH1 and Gli1 in three kinds of S-type NB cell lines(SK-N-AS,SK-N-SH and SHEP1),respectively.Exogenous Shh was administrated to activate Shh signaling pathway while cyclopamine was used as a selective antagonist of Shh pathway.S-type NB cell lines were treated with different concentrations of Shh or/and cyclopamine for different durations.Cell viability was measured by using MTT method.Apoptosis rate and cell cycle were assayed by flow cytometry.The xenograft experiments were used to evaluate the role of Shh pathway in tumor growth in immunodeficient mice.High-level expression of PTCH1 and Gli1 was detected in both NB samples and S-type NB cell lines.Cyclopamine decreased the survival rate of the three cell lines while Shh increased it,and the inhibition effects of cyclopamine could be partially reversed by shh pre-treatment.Cyclopamine induced the cell apoptosis and the cell cycle arrest in G0/G1 phase,while Shh induced the reverse effects and could partially prevent effects of cyclopamine.Cyclopamine could also inhibit the growth of NB in vivo.Our studies revealed that activation of the Shh pathway is important for survival and proliferation of S-type NB cells in vivo and in vitro through affecting cell apoptosis and cell cycle,suggesting a new therapeutic approach to NB.
基金the National NaturalScience Foundation of China(Grant No.140032010-C,49972063)the National Key Basic Research andDevelopment Project of China(Grant No.G1999075508)+3 种基金the Ministry of Education's Teacher Fund(No.40133020)the Natural Science Foundation of Shaanxi Province(2002D03)the Special Foundation of the Department ofEducation of Shaanxi Province(01JK108) the ScienceFoundation of Northwest University.
文摘The Shicaogou granite has been identified as a magnesian (Fe-number=0.71-0.76), calcic to calc-alkalic (MALI=3.84-5.76) and peraluminous (ASI=1.06-1.13) granite of the syn-collisional S-type, with high SiO2(>71%), A12O3 (>13%) and Na2O+K2O (6.28%-7.33%, equal for NaO2 and K2O). Trace element and REE analyses show that the granite is rich in LILE such as of Rb, Sr, Ba and Th, and poor in HFSE like Yb, Y, Zr and Hf. Its Rb/Sr ratio is greater than 1; the contents of Nb and Ta, and the ratio of Nb/Ta as well as the REE geochemical features (e.g. REE abundance, visible fractionation of LREE and HREE and medium to pronounced negative Eu anomalies) are all similar to those of crust-origin, continent-continent syn-collisional granite. Moreover, the granite exhibits almost the same pattern as that of the typical continent-continent syn-collisional granite on the spider diagram and all samples fall within the syn-collisional granite field.The cathodoluminescence (CL) investigations have revealed that the zircon from the Shicaogou granite represents a typical magmatic product characterized by its colorless, transparent and euhedral crystals, and distinct zoning of oscillatory bands. Residual cores of irregular zircon can be found in a few enhedral grains. Trace element studies of the zircon grains, with high contents of P, Y, Hf, Th, U and REE and high ratios of Th/U, obviously positive Ce anomalies and HREE enrichment compared to LREE, also result in the same conclusion.The LA-ICP-MS U-Pb isotopic data from 24 spots of 21 zircon grains demonstrate that 20 spots in the oscillatory zone yield an average weighted 206Pb/238U age of 925±11 Ma, indicating that the Shicaogou granite was formed in the Neoproterozoic. Combined with other Neoproterozoic syn-collisional granites found in the study area, the present geochronological determination can further reveal that collision-amalgamation events could have occurred among some continental blocks in the Qinling orogenic belt during the Neoproterozoic. This in turn provides an accurate chronological constraint on the Neoproterozoic break-up and convergence in the belt.
基金supported by the China Geological Survey project(1212011120623)
文摘In the western Yangtze Block, widespread Mesoproterozoic to Neoproterozoic rocks are the key to understanding the Precambrian tectonic-magmatic evolution of the region. However, their petrogenesis and tectonic setting are still controversial. In this paper, zircon U-Pb ages, Sm-Nd isotopic and whole-rock geochemical data are reported from selected fresh samples in the southern Dechang county, southwestern China, in order to constrain their emplacement age and magma source, as well as their petrogenesis and tectonic setting. They are mainly composed of biotite monzogranite, monzonitic granite, biotite granodiorites, and quartz diorite. Two ages of 1055 ± 43 Ma and 837.6 ± 3.8 Ma were obtained through zircon U-Pb dating by LA-ICP-MS and LA-MC-ICP-MS, respectively. According to their major element compositions, the Grenville-age granites are peraluminous calc-alkaline series calcic S-type granite. In contrast, the mid-Neoproterozoic granites are metaluminous calc-aikaline series alkalic I-type granite. Furthermore, the S-type granites are enriched in LREEs relative to HREEs with (La/Yb)N ratios of 3.85-18.56 and underwent major fractionation with strongly negative Eu anomalies (Eu/Eu* = 0.38-0.66). In the MORB-normalized trace element variation diagram, all the samples are enriched in Ce and large ion lithophile elements such as Rb, Th, and K, and depleted in high field strength elements such as Nb, and Ti, with negative Sr and Ti anomalies. The I-type granites are enriched in LREEs with slight negative Eu anomalies (Eu/Eu*= 0.83-0.93). They are characterized by the enrichment of highly incompatible elements (such as K, Rb, Ba, Th) and LREEs, relative to MORB. Neodymium isotopic data show that the S-type granites display 143Nd/144Nd values of 0.51241-0.51256, and have eNa (t = 1055 Ma) values of (-3.29) to (-3.81). Calculated tDM ages yield values from 1.87 to 1.91 Ga with the tDM.2stg ages of 1.86 to 1.9 Ga. The I-type granites have 143Nd/144Nd ratios between 0.51192 and 0.51195, corresponding to initial eNd (t = 837 Ma) values of 1.22 to 5.63. Calculated tDM ages yield values from 1.0 to 1.38 Ga and the tDM.2stg ages yield values from 0.99 to 1.06 Ga. The S-type granites are distinguished as syn-collision granite, whereas the I-type granites were formed as arc magmas according to the Rb-(Yb+Ta) and R1-R2 tectonic discrimination diagrams. To conclude, there are two types of spatially associated granite, the Mesoproterozoic S-type granite which were derived from re- melting of upper crustal mudstone and/or clastics and resulted from the convergence of two continental plates, and the mid-Neoproterozoic I-type granite which formed in continental arc and resulted from mantle-derived magma mixed crust material, in the western Yangtze Block. Furthermore, we suggest that collision between the Yangtze and Cathaysia blocks occurred at about 1055 Ma, and caused the S- type granite. The I-type granite related to the subduction of oceanic lithosphere eastward underneath the Yangtze Block in the mid-Neoproterozoic.
基金funded by the 1:50,000 Regional Survey Program for Kusilafu of Aketao County of Xinjiang uygur autonomou sregion
文摘Late Hercynian-early Indosinian (Triassic) granite is widely distributed around the Taer region of the northern margin of West Kunlun. The rock mass is mainly composed of calc-alkaline porphyroid biotite adamellite and characterized by SiO2-rich, high-Ca, moderate-alkaline, and strongly peraluminous attributes, and relatively low ~REE with LREE enrichment and a moderate Eu anomaly. As shown in the trace element spider web diagram, distinct peaks appear for Th, La, Nd, and Zr and clearly low values appear for Ba, Nb, Sr, P, and Ti. Further, compared with the primitive mantle, Rb/Sr and Rb/Ba are considerably higher and Nd/Th and Nb/Ta are relative low, all falling into the scope of the crust-origin rocks, indicating the characteristics of the crust-origin S-type granite. The rock mass's zircon U-Pb isotopic age is determined to be 235.7 -~ 3.9 Ma. On the basis of the age data, spatio-temporal location, lithology, and geochemistry of the rock mass, we conclude that the formation of the rock mass is closely related to the strong compressional orogenic movement (240 Ma) of the Tianshuihai terrane and the South Kunlun terrane. The rock mass is the product of the collision orogenic movement. However, distinct differences are observed between the studied rock mass and the synorogenic Bulunkou rock mass, which may be caused by the different collision strength and different positions with respect to the collision zone.
基金Project(41802103)supported by the National Natural Science Foundation of ChinaProject(2017YFC0601403)supported by the National Key R&D Program of China
文摘The Pamir plateau may have been a westward continuation of Tibet plateau.Meanwhile,the Rushan-Pshart suture is correlative to the Bangong-Nujiang suture of Tibet,and the Central Pamir is the lateral equivalent of the Qiangtang Block.We present the first detailed LA-ICPMS zircon U-Pb chronology,major and trace element,and Lu-Hf isotope geochemistry of Taxkorgan two-mica monzogranite to illuminate the Tethys evolution in central Pamir.LA-ICPMS zircon U-Pb dating shows that two-mica monzogranite is emplaced in the Cretaceous(118 Ma).Its geochemical features are similar to S-type granite,with enrichment in LREEs and negative Ba,Sr,Zr and Ti anomalies.All the samples show negative zirconεHf(t)values ranging from 17.0 to 12.5(mean 14.5),corresponding to crustal Hf model(TDM2)ages of 1906 to 2169 Ma.It is inferred that these granitoids are derived from partial melting of peliticmetasedimentary rocks analogous to the Paleoproterozoic Bulunkuole Group,predominantly with muscovite schists component.Based on the petrological and geochemical data presented above,together with the regional geology,this work provides new insights that Bangong Nujiang Ocean closed in Early Cretaceous(120114 Ma).
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2002AA421150)Specialized Re-search Fund for Doctor Program of Higher Education of China (No. 20030335091).
文摘To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly.
基金This study was jointly funded by projects of the Ministry of Commerce([2015]352 and[2012]558)the projects of the China Geological Survey(DD20201150 and 1212011220910)。
文摘The Paleoproterozoic tectonic evolution of the Bangweulu Block has long been controversial.Paleoproterozoic granites consisting of the basement complex of the Bangweulu Block are widely exposed in northeastern Zambia,and they are the critical media for studying the tectonic evolution of the Bangweulu Block.This study systematically investigated the petrography,zircon U-Pb chronology,and petrogeochemistry of the granitoid extensively exposed in the Lunte area,northeastern Zambia.The results show that the granitoid in the area formed during 2051±13-2009±20 Ma as a result of Paleoproterozoic magmatic events.Geochemical data show that the granites in the area mainly include syenogranites and monzogranites of high-K calc-alkaline series and are characterized by high SiO2 content(72.68%‒73.78%)and K_(2)O/Na_(2)O ratio(1.82‒2.29).The presence of garnets,the high aluminum saturation index(A/CNK is 1.13‒1.21),and the 1.27%‒1.95%of corundum molecules jointly indicate that granites in the Lunte area are S-type granites.Rare earth elements in all samples show a rightward inclination and noticeably negative Eu-anomalies(δEu=0.16‒0.40)and are relatively rich in light rare earth elements.Furthermore,the granites are rich in large ion lithophile elements such as Rb,Th,U,and K and are depleted in Ba,Sr,and high field strength elements such as Ta and Nb.In addition,they bear low contents of Cr(6.31×10^(−6)‒10.8×10^(−6)),Ni(2.87×10^(−6)‒4.76×10^(−6)),and Co(2.62×10^(−6)‒3.96×10^(−6)).These data lead to the conclusion that the source rocks are meta-sedimentary rocks.Combining the above results and the study of regional tectonic evolution,the authors suggest that granitoid in the Lunte area were formed in a tectonic environment corresponding to the collision between the Tanzania Craton and the Bangweulu Block.The magmatic activities in this period may be related to the assembly of the Columbia supercontinent.