Manipulating directional chiral optical emissions on a nanometer scale is significant for material science research. The electron-beam-excited nanoantenna provides a favorable platform to tune optical emissions at the...Manipulating directional chiral optical emissions on a nanometer scale is significant for material science research. The electron-beam-excited nanoantenna provides a favorable platform to tune optical emissions at the deep subwavelength scale. Here we present an L-shaped electron-beam-excited nanoantenna(LENA) with two identical orthogonal arms. By selecting different electron-beam impacting sites on the LENA, either the lefthanded circularly polarized(LCP) or the right-handed circularly polarized(RCP) emission can be excited. The LCP and RCP emissions possess different emission directionality, and the emission wavelength depends on the arm length of the LENA. Further, we show a combined nanoantenna with two LENAs of different arm lengths.Induced by the electron beam, LCP and RCP lights emit simultaneously from the nanoantenna with different wavelengths to different directions. This approach is suggested to be informative for investigating electron-photon interaction and electron-beam spectroscopy in nanophotonics.展开更多
In the traditional pipeline magnetic flux leakage(MFL)detection technology,circumferential or axial excitation is mainly used to excite the magnetic field of defects.However,the domestic and foreign pipeline detection...In the traditional pipeline magnetic flux leakage(MFL)detection technology,circumferential or axial excitation is mainly used to excite the magnetic field of defects.However,the domestic and foreign pipeline detection devices currently in operation are mainly axial excitation MFL detection tools,in which circumferential cracks can be clearly identified,but the detection sensitivity of axial cracks is not high,thus forming a detection blind zone.Therefore,a composite excitation multi-extension direction defect MFL detection method is proposed,which can realize the simultaneous detection of axial and circumferential defects.On the basis of the electromagnetic theory Maxwell equation and Biot Savart law,a mathematical model of circumferential and axial magnetization is firstly established.Then finite element simulation software is used to establish a model of a new type of magnetic flux leakage detection device,and a simulation analysis of crack detection in multiple extension directions is carried out.Finally,under the conditions of the relationship model between the change rate of leakage magnetic field and external excitation intensity under unsaturated magnetization and the multi-stage coil magnetization model,the sample vehicle towing experiment is carried out.The paper aims to analyze the feasibility and effectiveness of the new magnetic flux leakage detection device for detecting defects in different extension directions.Based on the final experimental results,the new composite excitation multi extension direction leakage magnetic field detector has a good detection effect for defects in the axial and circumferential extension directions.展开更多
Ground motion records are often used to develop ground motion prediction equations (GMPEs) for a randomly oriented horizontal component, and to assess the principal directions of ground motions based on the Arias in...Ground motion records are often used to develop ground motion prediction equations (GMPEs) for a randomly oriented horizontal component, and to assess the principal directions of ground motions based on the Arias intensity tensor or the orientation of the major response axis. The former is needed for seismic hazard assessment, whereas the latter can be important for assessing structural responses under multi-directional excitations. However, a comprehensive investigation of the pseudo-spectral acceleration (PSA) and of GMPEs conditioned on different axes is currently lacking. This study investigates the principal directions of strong ground motions and their relation to the orientation of the major response axis, statistics of the PSA along the principal directions on the horizontal plane, and correlation of the PSA along the principal directions on the horizontal plane. For these, three sets of strong ground motion records, including intraplate California earthquakes, inslab Mexican earthquakes, and interface Mexican earthquakes, are used. The results indicate that one of the principal directions could be considered as quasi-vertical. By focusing on seismic excitations on the horizontal plane, the statistics of the angles between the major response axis and the major principal axis are obtained; GMPEs along the principal axes are provided and compared with those obtained for a randomly oriented horizontal component; and statistical analysis of residuals associated with GMPEs along the principal directions is carried out.展开更多
Coherent electronic dynamics are of great significance in photo-induced processes and molecular magnetism.We theoretically investigate electronic dynamics of triatomic molecule H_(3)^(2+) by circularly polarized pulse...Coherent electronic dynamics are of great significance in photo-induced processes and molecular magnetism.We theoretically investigate electronic dynamics of triatomic molecule H_(3)^(2+) by circularly polarized pulses,including electron density distributions,induced electronic currents,and ultrafast magnetic field generation.By comparing the results of the coherent resonant excitation and direct ionization,we found that for the coherent resonant excitation,the electron is localized and the coherent electron wave packet moves periodically between three protons,which can be attributed to the coherent superposition of the ground A′state and excited E+state.Whereas,for the direct single-photon ionization,the induced electronic currents mainly come from the free electron in the continuum state.It is found that there are differences in the intensity,phase,and frequency of the induced current and the generated magnetic field.The scheme allows one to control the induced electronic current and the ultrafast magnetic field generation.展开更多
A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled...A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled voltage-sourceinverter is used to connect the system to utility grid.An intermediate DC bus exists between the rectifier and inverter.A new control strategy is proposed which achieves the maximum power point tracking(MPPT) with the control of excitation current of HESM and stabilizes the DC link voltage with the control of inverter output current simultaneously.Specially-designed buck circuit is used to control the excitation current of HESM,and grid voltage-oriented vector control strategy is employed to realize the decoupling of the inverter output power.Simulation results and experiment in 3 kW lab prototype show an excellent static and dynamic performance of the proposed system.展开更多
Labyrinth seal can cause steam-exciting, the structural and operating parameters of labyrinth seal have effect on stability of rotor-system. For investigating the coupling influences of the structure and operating par...Labyrinth seal can cause steam-exciting, the structural and operating parameters of labyrinth seal have effect on stability of rotor-system. For investigating the coupling influences of the structure and operating parameters of labyrinth seals on dynamic coefficients, a model of calculating dynamic coefficients of labyrinth seals is presented using a two control volume model. The coupling influences of parameters on cross-coupled stiffness and direct damping of labyrinth seal are discussed. In the conclusion, a reference of preventing steam-exciting vibration and optimum determination of design parameters of labyrinth seals are provided.展开更多
Shear logs,also known as shear velocity logs,are used for various types of seismic analysis,such as determining the relationship between amplitude variation with offset(AVO)and interpreting multiple types of seismic d...Shear logs,also known as shear velocity logs,are used for various types of seismic analysis,such as determining the relationship between amplitude variation with offset(AVO)and interpreting multiple types of seismic data.This log is an important tool for analyzing the properties of rocks and interpreting seismic data to identify potential areas of oil and gas reserves.However,these logs are often not collected due to cost constraints or poor borehole conditions possibly leading to poor data quality,though there are various approaches in practice for estimating shear wave velocity.In this study,a detailed review of the recent advances in the various techniques used to measure shear wave(S-wave)velocity is carried out.These techniques include direct and indirect measurement,determination of empirical relationships between S-wave velocity and other parameters,machine learning,and rock physics models.Therefore,this study creates a collection of employed techniques,enhancing the existing knowledge of this significant topic and offering a progressive approach for practical implementation in the field.展开更多
Pushover analysis and time history analysis are conducted to explore the bi-directional seismic behavior of composite steel-concrete rigid frame bridge, which is composed of RC piers and steel-concrete composite girde...Pushover analysis and time history analysis are conducted to explore the bi-directional seismic behavior of composite steel-concrete rigid frame bridge, which is composed of RC piers and steel-concrete composite girders. Both longitudinal and transverse directions excitations are investigated using OpenSees. Firstly, the applicability of pushover analysis based on the funda- mental mode is discussed. Secondly, an improved pushover analysis method considering the contribution of higher modes is proposed, and the applicability on composite rigid frame bridges under bi-directional earthquake is verified. Based on this method, an approach to predict the displacement responses of composite rigid frame bridge under random hi-directional seismic excitations by revising the elasto-plastic demand curve is also proposed. It is observed that the developed method yield a good estimate on the responses of composite rigid frame bridges under bi-directional seismic excitations.展开更多
The electrically excited synchronous motor(ESM)has typically small synchronous inductance values and quite low transient values because of the damper windings mounted on the rotor.Therefore,the torque and stator flux ...The electrically excited synchronous motor(ESM)has typically small synchronous inductance values and quite low transient values because of the damper windings mounted on the rotor.Therefore,the torque and stator flux linkage ripples are high in the direct torque control(DTC)drive of the ESM with a torque and flux linkage hysteresis controller(basic DTC).A DTC scheme with space vector modulation(SVM)for the ESM was investigated in this paper.It is based on the compensation of the stator flux link-age vector error using the space vector modulation in order to decrease the torque and flux linkage ripples and produce fixed switching frequency under the principle that the torque is controlled by the torque angle in the ESM.Compared with the basic DTC,the results of the simulation and experiment show that the torque and flux linkage ripples are reduced,the maximum current value is decreased during the startup,and the current distortion is much smaller in the steady-state under the SVM-DTC.The field-weakening control is incorporated with the SVM-DTC successfully.展开更多
基金supported by the National Key R&D Program of China(Grant No.2020YFA0211300)the National Natural Science Foundation of China(Grant Nos.11974177,61975078,and 12234010)。
文摘Manipulating directional chiral optical emissions on a nanometer scale is significant for material science research. The electron-beam-excited nanoantenna provides a favorable platform to tune optical emissions at the deep subwavelength scale. Here we present an L-shaped electron-beam-excited nanoantenna(LENA) with two identical orthogonal arms. By selecting different electron-beam impacting sites on the LENA, either the lefthanded circularly polarized(LCP) or the right-handed circularly polarized(RCP) emission can be excited. The LCP and RCP emissions possess different emission directionality, and the emission wavelength depends on the arm length of the LENA. Further, we show a combined nanoantenna with two LENAs of different arm lengths.Induced by the electron beam, LCP and RCP lights emit simultaneously from the nanoantenna with different wavelengths to different directions. This approach is suggested to be informative for investigating electron-photon interaction and electron-beam spectroscopy in nanophotonics.
基金National Natural Science Foundation of China(No.51804267)State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(No.PRP/open-1610)。
文摘In the traditional pipeline magnetic flux leakage(MFL)detection technology,circumferential or axial excitation is mainly used to excite the magnetic field of defects.However,the domestic and foreign pipeline detection devices currently in operation are mainly axial excitation MFL detection tools,in which circumferential cracks can be clearly identified,but the detection sensitivity of axial cracks is not high,thus forming a detection blind zone.Therefore,a composite excitation multi-extension direction defect MFL detection method is proposed,which can realize the simultaneous detection of axial and circumferential defects.On the basis of the electromagnetic theory Maxwell equation and Biot Savart law,a mathematical model of circumferential and axial magnetization is firstly established.Then finite element simulation software is used to establish a model of a new type of magnetic flux leakage detection device,and a simulation analysis of crack detection in multiple extension directions is carried out.Finally,under the conditions of the relationship model between the change rate of leakage magnetic field and external excitation intensity under unsaturated magnetization and the multi-stage coil magnetization model,the sample vehicle towing experiment is carried out.The paper aims to analyze the feasibility and effectiveness of the new magnetic flux leakage detection device for detecting defects in different extension directions.Based on the final experimental results,the new composite excitation multi extension direction leakage magnetic field detector has a good detection effect for defects in the axial and circumferential extension directions.
基金Natural Science and Engineering Research Council of Canada(NSERC)
文摘Ground motion records are often used to develop ground motion prediction equations (GMPEs) for a randomly oriented horizontal component, and to assess the principal directions of ground motions based on the Arias intensity tensor or the orientation of the major response axis. The former is needed for seismic hazard assessment, whereas the latter can be important for assessing structural responses under multi-directional excitations. However, a comprehensive investigation of the pseudo-spectral acceleration (PSA) and of GMPEs conditioned on different axes is currently lacking. This study investigates the principal directions of strong ground motions and their relation to the orientation of the major response axis, statistics of the PSA along the principal directions on the horizontal plane, and correlation of the PSA along the principal directions on the horizontal plane. For these, three sets of strong ground motion records, including intraplate California earthquakes, inslab Mexican earthquakes, and interface Mexican earthquakes, are used. The results indicate that one of the principal directions could be considered as quasi-vertical. By focusing on seismic excitations on the horizontal plane, the statistics of the angles between the major response axis and the major principal axis are obtained; GMPEs along the principal axes are provided and compared with those obtained for a randomly oriented horizontal component; and statistical analysis of residuals associated with GMPEs along the principal directions is carried out.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074146 and 12074142)。
文摘Coherent electronic dynamics are of great significance in photo-induced processes and molecular magnetism.We theoretically investigate electronic dynamics of triatomic molecule H_(3)^(2+) by circularly polarized pulses,including electron density distributions,induced electronic currents,and ultrafast magnetic field generation.By comparing the results of the coherent resonant excitation and direct ionization,we found that for the coherent resonant excitation,the electron is localized and the coherent electron wave packet moves periodically between three protons,which can be attributed to the coherent superposition of the ground A′state and excited E+state.Whereas,for the direct single-photon ionization,the induced electronic currents mainly come from the free electron in the continuum state.It is found that there are differences in the intensity,phase,and frequency of the induced current and the generated magnetic field.The scheme allows one to control the induced electronic current and the ultrafast magnetic field generation.
基金Project supported by Delta Power Electronic Science and Education Development (Grant No.DRES2007002)
文摘A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled voltage-sourceinverter is used to connect the system to utility grid.An intermediate DC bus exists between the rectifier and inverter.A new control strategy is proposed which achieves the maximum power point tracking(MPPT) with the control of excitation current of HESM and stabilizes the DC link voltage with the control of inverter output current simultaneously.Specially-designed buck circuit is used to control the excitation current of HESM,and grid voltage-oriented vector control strategy is employed to realize the decoupling of the inverter output power.Simulation results and experiment in 3 kW lab prototype show an excellent static and dynamic performance of the proposed system.
基金This project is supported by National Natural Science Foundation of China(59990472). Manuscript received on November 30, 1999 r
文摘Labyrinth seal can cause steam-exciting, the structural and operating parameters of labyrinth seal have effect on stability of rotor-system. For investigating the coupling influences of the structure and operating parameters of labyrinth seals on dynamic coefficients, a model of calculating dynamic coefficients of labyrinth seals is presented using a two control volume model. The coupling influences of parameters on cross-coupled stiffness and direct damping of labyrinth seal are discussed. In the conclusion, a reference of preventing steam-exciting vibration and optimum determination of design parameters of labyrinth seals are provided.
文摘Shear logs,also known as shear velocity logs,are used for various types of seismic analysis,such as determining the relationship between amplitude variation with offset(AVO)and interpreting multiple types of seismic data.This log is an important tool for analyzing the properties of rocks and interpreting seismic data to identify potential areas of oil and gas reserves.However,these logs are often not collected due to cost constraints or poor borehole conditions possibly leading to poor data quality,though there are various approaches in practice for estimating shear wave velocity.In this study,a detailed review of the recent advances in the various techniques used to measure shear wave(S-wave)velocity is carried out.These techniques include direct and indirect measurement,determination of empirical relationships between S-wave velocity and other parameters,machine learning,and rock physics models.Therefore,this study creates a collection of employed techniques,enhancing the existing knowledge of this significant topic and offering a progressive approach for practical implementation in the field.
基金the financial support provided by the National Science and Technology Support Program(No.2011BAJ09B02)the National Natural Science Foundation of China(No.51138007,51222810)
文摘Pushover analysis and time history analysis are conducted to explore the bi-directional seismic behavior of composite steel-concrete rigid frame bridge, which is composed of RC piers and steel-concrete composite girders. Both longitudinal and transverse directions excitations are investigated using OpenSees. Firstly, the applicability of pushover analysis based on the funda- mental mode is discussed. Secondly, an improved pushover analysis method considering the contribution of higher modes is proposed, and the applicability on composite rigid frame bridges under bi-directional earthquake is verified. Based on this method, an approach to predict the displacement responses of composite rigid frame bridge under random hi-directional seismic excitations by revising the elasto-plastic demand curve is also proposed. It is observed that the developed method yield a good estimate on the responses of composite rigid frame bridges under bi-directional seismic excitations.
基金supported by the Aeronautics Key Science Foundation of China(No.98Z52001)the Fifteen Aeronautics Pre-research Item of China(No.40200201).
文摘The electrically excited synchronous motor(ESM)has typically small synchronous inductance values and quite low transient values because of the damper windings mounted on the rotor.Therefore,the torque and stator flux linkage ripples are high in the direct torque control(DTC)drive of the ESM with a torque and flux linkage hysteresis controller(basic DTC).A DTC scheme with space vector modulation(SVM)for the ESM was investigated in this paper.It is based on the compensation of the stator flux link-age vector error using the space vector modulation in order to decrease the torque and flux linkage ripples and produce fixed switching frequency under the principle that the torque is controlled by the torque angle in the ESM.Compared with the basic DTC,the results of the simulation and experiment show that the torque and flux linkage ripples are reduced,the maximum current value is decreased during the startup,and the current distortion is much smaller in the steady-state under the SVM-DTC.The field-weakening control is incorporated with the SVM-DTC successfully.