期刊文献+
共找到1,419篇文章
< 1 2 71 >
每页显示 20 50 100
Effects of high pressure treating on the phase transformation kinetics of austenite to pearlite in low carbon and low alloy steel 被引量:5
1
作者 HAN Zhen-li 《材料科学与工程(中英文版)》 2007年第1期61-66,共6页
关键词 相变动力学 低合金钢 奥氏体 低碳钢 高压力 珠光体 治疗 Avrami指数
下载PDF
Effect of high pressure treatment on solid-state phase transformation in low carbon alloy steel during heating process 被引量:2
2
作者 XIE Dan-yang WU Hong-lian +1 位作者 LIU Jian-hua ZHANG Rui-jun 《材料科学与工程(中英文版)》 2009年第6期24-27,43,共5页
关键词 低碳合金钢 固态相变 高压处理 加热过程 微观结构变化 动力学 低温区 珠光体
下载PDF
The micro structure of high carbon low alloy steel for easy drawing
3
作者 HU Donghui Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 《Baosteel Technical Research》 CAS 2010年第S1期59-,共1页
For better processing performance of high carbon low alloy steel wire rod,an investigation about the influence of cementite lamellar spacing on wire 'easy drawing' performance is completed.It is pointed out th... For better processing performance of high carbon low alloy steel wire rod,an investigation about the influence of cementite lamellar spacing on wire 'easy drawing' performance is completed.It is pointed out that too thin cementite lamellar spacing(<80 um) reduces the strain hardening level of wire drawing, and reduce the torsion performance of drawn wire at same time.For the wire or wire rod from industrial production,compared with the micro-structure with troostite,the micro-structure with sorbite or sorbite mixed with pearlite is more suitable to the drawing process with high reduction ratio. 展开更多
关键词 high carbon low alloy steel interlamellar spacing strain hardening level torsion performance
下载PDF
ISOCHRONOUS STRESS-STRAIN CURVES OF LOW ALLOY STEEL CROSS-WELD-SPECIMEN AT HIGH TEMPERATURE 被引量:4
4
作者 C.W.Ma F.Z.Xuan +1 位作者 Z.D.Wang S.T.Tu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期612-617,共6页
In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, ... In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal. 展开更多
关键词 isochronous stress-strain curve creep deformation high temperature welded joint low alloy steel
下载PDF
A method to study interface diffusion of arsenic into a Nb-Ti microalloyed low carbon steel 被引量:3
5
作者 Yuan-zhi Zhu Jian-ping XU 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第9期821-826,共6页
A novel diffusion couple method was used to investigate the interface diffusion of arsenic into a Nb-Ti microalloyed low carbon steel and its effects on phase transformation at the interface. It is discovered that the... A novel diffusion couple method was used to investigate the interface diffusion of arsenic into a Nb-Ti microalloyed low carbon steel and its effects on phase transformation at the interface. It is discovered that the content of arsenic has great effect on grain growth and phase transformation at high temperature. When the arsenic content is no more than lwt%, there is no obvious grain growth and no obvious ferrite transitional region formed at the diffusion interface. However, when the arsenic content is no less than 5wt%, the grain grows very rapidly. In addition, the arsenic-enriched ferrite transitional layer forms at the diffusion interface in the hot-rolling process, which results from a slower diffusion rate of arsenic atoms than that of carbon in ferrite. 展开更多
关键词 low carbon steel alloy steel ARsENIC diffusion bonding phase transformation grain growth
下载PDF
Microstructure and mechanical properties of high-strength low alloy steel by wire and arc additive manufacturing 被引量:8
6
作者 Yi-li Dai Sheng-fu Yu +1 位作者 An-guo Huang Yu-sheng Shi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第7期933-942,共10页
A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed an... A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed and analyzed.The results show that the forming part includes four regions.The solidification zone solidifies as typical columnar crystals from a molten pool.The complete austenitizing zone forms from the solidification zone heated to a temperature greater than 1100℃,and the typical columnar crystals in this zone are difficult to observe.The partial austenitizing zone forms from the completely austenite zone heated between Ac1(austenite transition temperature)and1100℃,which is mainly equiaxed grains.After several thermal cycles,the partial austenitizing zone transforms to the tempering zone,which consistes of fully equiaxed grains.From the solidification zone to the tempering zone,the average grain size decreases from 75 to20μm.The mechanical properties of HBMDPJ satisfies the requirement for the intended application. 展开更多
关键词 wire and arc additive manufacturing high strength low alloy steel microstructure INCLUsIONs fine grain ferrite mechanical properties
下载PDF
Numerical simulation of residual stress and deformation for submerged arc welding of Q690D high strength low alloy steel thick plate 被引量:8
7
作者 Zhu Zikun Han Yang +2 位作者 Zhang Zhou Zhang Yi Zhou Longzao 《China Welding》 CAS 2021年第3期49-58,共10页
The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under differen... The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under different welding heat input and groove angles.The simulation results show that as the welding heat input increases,the peak temperature during the welding process is higher,and the residual stress increases,they are all between 330–340 MPa,and the residual stress is concentrated in the area near the weld.The hole-drilling method is used to measure the actual welding residual stress,and the measured data is in good agreement with the simulated value.The type of post-welding deformation is angular deformation,and as the welding heat input increases,the maximum deformation also increases.It shows smaller residual stress and deformation when the groove angle is 40°under the same heat input.In engineering applications,under the premise of guaranteeing welding quality,smaller heat input and 40°groove angle should be used. 展开更多
关键词 numerical simulation multi-layer and multi-pass welding Q690D high strength low alloy steel welding residual stress and deformation
下载PDF
High Carbon Alloy Steels with Multiple Types of Ultra-fine Carbides and Their Characteristics 被引量:9
8
作者 MAYong-qing GAOHong-tao QIYu-hong ZHANGZhan-Ping DAIYu-mei LIUYan-xia 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第5期117-121,共5页
Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of ... Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of carbides transformation orderliness, the alloy composition design of the high carbon alloy steels is conducted by phase-equilibrium thermodynamic calculation for Fe-Cr-W-Mo-V-C system. The nucleation and growth of new carbides, dissolution of previous partial carbides in these steels during annealing process, all these lead to ultra-fine distribution of carbides. Due to different crystal structures of carbides and different thermodynamics as well dynamics parameters of the carbides dissolution and precipitation, the range of quenching temperature of these steels is widened, and the good temper-resistance is obtained. The characteristics of heat treatment process and microstructure variance, and the carbides transformation for different temperature are explained by the phase-equilibrium component satisfactorily. Their bend and yield strength, flexibility and toughness all are advanced markedly comparing with that of kindred steels. Results of the applications have proved that the microstructure of ultra-fine carbides in these steels played importance roles in the enhancement of edginess and fatigue crack resistance of the die and knives. 展开更多
关键词 超细硬质合金 高碳钢 结构设计 成分设计
下载PDF
Abrasive Wear Characteristics of Carbon and Low Alloy Steels for Better Performance of Farm Implements 被引量:2
9
作者 M.Kumar and R. C Gupta(Centre of Advanced Study, Dept. of Metallurgical Engineering, Institute of Technology,Banaras Hindu University, Vaanasi -221 005, India) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第2期91-96,共6页
The low stress abrasion behaviours of heat treated mild, medium carbon and high C - low Cr steels, which are generally used in making farm implements, have been investigated. The simple heat treatment greatly improves... The low stress abrasion behaviours of heat treated mild, medium carbon and high C - low Cr steels, which are generally used in making farm implements, have been investigated. The simple heat treatment greatly improves the hardness, tensile strength and abrasion resistance of medium carbon and high C - low Cr steels. The results indicate that the material removal during abrasion is controlled by a number of factors, such as hardness, chemical composition, microstructure and heat treatment conditions. The conclusion is that the heat treated high C - low Cr steel and mild steel carburized by using coaltar pitch provide the best hardness and abrasion resistance and thus appear to be the most suitable materials for making agricultural tools. 展开更多
关键词 Abrasive Wear Characteristics of carbon and low alloy steels for Better Performance of Farm Implements MPA
下载PDF
Carbon Equivalent Fundamentals in Evaluating the Weldability of Microalloy and Low Alloy Steels 被引量:2
10
作者 Munkaila Alhassan Yussif Bashiru 《World Journal of Engineering and Technology》 2021年第4期782-792,共11页
Understanding the weldability of steel in relation to the use of carbon equivalent is very necessary </span><span style="white-space:normal;font-family:"">for</span><span style... Understanding the weldability of steel in relation to the use of carbon equivalent is very necessary </span><span style="white-space:normal;font-family:"">for</span><span style="white-space:normal;font-family:""> the welding industry. The study was poised to unearth the fundamentals of carbon equivalent as applied in evaluating the weldability of steel. The study used </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">two-stage design approach to address the problem of carbon equivalence weldability of steel, thus, survey and experimental. Two different steels were tested to ascertain their chemical composition which could inform carbon equivalent calculation, and the results revealed microalloy and low alloy steels respectively. In subjecting the microalloy steel to carbon equivalent analyses of the AWS and IIW coefficients;revealed a value (CEV) = 0.11 each, suggesting that this microalloy steel has excellent weldability;no preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:""> is required. A successful welding operation on this steel does not depend on preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:"">.<b> </b>Also</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> the average results of the low alloy steel revealed a value (CEV) = 0.37 and 0.32 respectively, suggesting that this type of steel has very good weldability and may require </span><span style="white-space:normal;font-family:"">to </span><span style="white-space:normal;font-family:"">preheat. It is recommended that welders have </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">general idea about the weldability of steel with regard to carbon equivalent calculation. In addition</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> they should understand the chemical compositions of steels they are dealing with. 展开更多
关键词 carbon Equivalent Evaluation of Weldability Microalloy steel low alloy steel Chemical Composition
下载PDF
Effect of High Pressure Heat Treatment on Microstructure and Compressive Properties of Low Carbon Steel 被引量:1
11
作者 Meng Deliang 《材料科学与工程(中英文B版)》 2018年第2期45-48,共4页
The effect of high pressure heat treatment on microstructure and compressive properties of low carbon steel were investigated by optical microscope,transmission electron microscope,hardness tester and compression test... The effect of high pressure heat treatment on microstructure and compressive properties of low carbon steel were investigated by optical microscope,transmission electron microscope,hardness tester and compression test methods.The results show that martensite appears in low carbon steel at 1-5GPa GPa and 950°C for 15 minutes treatment,high pressure heat treatment can improve the hardness and compressive properties of the steel,the yield strength of the steel increases with increasing pressure,and its compressive properties are better than that treated under normal pressure quenching. 展开更多
关键词 low carbon steel high pressure HEAT treatment MICROsTRUCTURE COMPREssIVE properties
下载PDF
Effect of Fast Cooling Rate on the Microstructure and Mechanical Properties of Low-Carbon High-Strength Steel Annealed in the Intercritical Region 被引量:3
12
作者 李壮 田勇 +2 位作者 KANG Shaopu ZHENG Zhen LIU Ming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第3期572-577,共6页
The effect of fast cooling rate on the microstructure and mechanical properties of low-carbon high-strength steel annealed in the intercritical region was investigated using a Gleeble 1500 thermomechanical simulator a... The effect of fast cooling rate on the microstructure and mechanical properties of low-carbon high-strength steel annealed in the intercritical region was investigated using a Gleeble 1500 thermomechanical simulator and a continuous annealing thermomeehanical simulator. The results showed that the microstructure consisted of ferrite and bainite as the main phases with a small amount of retained austenite and martensite islands at cooling rate of 5 and 50 ℃/s, respectively. Fast cooling after continuous annealing affected all constituents of the microstructure. The mechanical properties were improved considerably. Ultimate tensile strength (U-TS) increased and total elongation (TEL) decreased with increasing cooling rate in all specimens. The specimen 1 at a cooling rate of 5 ℃/s exhibited the maximum TEL and UTSxTEL (20% and 27 200 MPa%, respectively) because of the competition between weakening by presence of the retained austenite plus the carbon indigence by carbide precipitation, and strengthening by martensitic islands and precipitation. The maximum UTS and YS (1 450 and 951 MPa, respectively) were obtained for specimen 2 at a cooling rate of 50 ℃/s. This is attributed to the effect of dispersion strengthening of finer martensite islands and the effect of precipitation strengthening of carbide precipitates. 展开更多
关键词 cooling rate low-carbon high-strength steel intercritical annealing MICROsTRUCTURE mechanical properties
下载PDF
Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints 被引量:7
13
作者 S.RAGU NATHAN V.BALASUBRAMANIAN +1 位作者 S.MALARVIZHI A.G.RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第3期308-317,共10页
Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, dis... Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding(FSW). In this investigation, a comparative evaluation of mechanical(tensile, impact,hardness) properties and microstructural features of shielded metal arc(SMA), gas metal arc(GMA) and friction stir welded(FSW) naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints. 展开更多
关键词 低合金高强度钢 焊接工艺 钢接头 组织结构 力学性能 搅拌摩擦焊 机械特性 焊接方法
下载PDF
Influence of soaking time in deep cryogenic treatment on the microstructure and mechanical properties of low-alloy medium-carbon HY-TUF steel 被引量:1
14
作者 Ahmad Zare S.R.Hosseini 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第6期658-666,共9页
The influence of soaking time in deep cryogenic treatment on the tensile and impact properties of low-alloy medium-carbon HY-TUF steel was investigated in this study. Microstructural studies based on phase distributio... The influence of soaking time in deep cryogenic treatment on the tensile and impact properties of low-alloy medium-carbon HY-TUF steel was investigated in this study. Microstructural studies based on phase distribution mapping by electron backscatter diffraction show that the deep cryogenic process causes a decrease in the content of retained austenite and an increase in the volume fraction of η-carbide with increasing soaking time up to 48 h. The decrease in the content of retained austenite from ~1.23vol% to 0.48vol% suggests an isothermal martensitic transformation at 77 K. The η-type precipitates formed in deep cryogenic-treated martensite over 48 h have the Hirotsu and Nagakura orientation relation with the martensitic matrix. Furthermore, a high coherency between η-carbide and the martensitic matrix is observed by high-resolution transmission electron microscopy. The variations in macrohardness, yield strength, ultimate tensile strength, and ductility with soaking time in the deep cryogenic process show a peak/plateau trend. 展开更多
关键词 low alloy steel medium carbon steel cryogenic treatment microstructure mechanical properties fractography
下载PDF
Effect of microstructure variation on the corrosion behavior of high-strength low-alloy steel in 3.5wt% NaCl solution 被引量:3
15
作者 Yu-bing Guo Chong Li +4 位作者 Yong-chang Liu Li-ming Yu Zong-qing Ma Chen-xi Liu Hui-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第6期604-612,共9页
The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental result... The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental results reveal that the type of microstructure has significant effect on the corrosion resistance of HSLA steel. The measurement results of weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy indicate that the steel with acicular ferrite microstructure exhibits the lowest corrosion rate. Martensite exhibits a reduced corrosion resistance compared with polygonal ferrite. It is found that the surface of the acicular ferrite specimen uniformly covered by corrosion products is seemingly denser and more compact than those of the other two microstructures, and can provide some amount of protection to the steel; thus, the charge transfer resistance and modulus values of the acicular ferrite specimen are the largest. However, corrosion products on martensite and polygonal ferrite are generally loose, porous, and defective, and can provide minor protectiveness; thus, the charge transfer resistance values for polygonal ferrite and martensite are lower. 展开更多
关键词 high-strength low-alloy steel microstructure corrosion sodium chloride solutions
下载PDF
PHASE TRANSFORMATION UNIT OF BAINITIC FERRITE AND ITS SURFACE RELIEF IN LOW AND MEDIUM CARBON ALLOY STEELS
16
作者 YU Degang CHEN Dajun ZHENG Jinghong HE Yirong SHEN Fufa Shanghai Jiaotong University,Shanghai,China Professor,Department of Materials Science and Engineering,Shanghai Jiaotong University,1954 Huashan Road,Shanghai 200030,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1989年第3期161-167,共7页
The lath-or plate-shaped bainitic ferrite of low and medium carbon alloy steels consists of packets of ferrite sublaths which are composed of many finer and regular ferrite blocks.They are uniform shear growth units o... The lath-or plate-shaped bainitic ferrite of low and medium carbon alloy steels consists of packets of ferrite sublaths which are composed of many finer and regular ferrite blocks.They are uniform shear growth units of bainitic phase transformation.No carbide is precipitated from them.The bainitic O-carbides are precipitated from γ-α interface or carbon-rich austenite.The mode of arrangement of the units in ferrite sublath packet is in uni-or bi-di- rection.Single surface relief is produced by the accumulation of uniform shear strains with all the ferrite units arranged unidirectionally in a sublath packet,while tent-shaped surface relief is formed by the integration of the uniform shear strains of two groups with ferrite units piling up in two directions and growing face to face;whereas if they grow back to back,the integra- tion will be responsible for invert-tent-shaped surface relief.The interface trace between two groups of ferrite units in a sublath packet is shown as“midrib”. 展开更多
关键词 low and medium carbon alloy steels BAINITE FERRITE phase transformation unit surface relief
下载PDF
Low temperature impact toughness of laser hybrid welded joint of high strength low alloy steel
17
作者 倪加明 李铸国 +2 位作者 黄坚 倪慧峰 吴毅雄 《China Welding》 EI CAS 2011年第3期1-5,共5页
High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmissi... High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Low temperature impact toughness was estimated by using Charpy V-notch impact samples selected from the upper part and the lower part at the same heterogeneous joint. Results show that the low temperature impact absorbed energies of weld metal are (202,180,165 J) of upper samples and (178,145,160 J) of lower samples, respectively. All of them increase compared to base metal. The embrittlement of HAZ does not occur. Weld metal primarily consists of refined carbide free bainite and a little granular bainite since laser hybrid welding owns the character of low heat input. Retained austenite constituent film "locates among the lath structure of bainitie ferrite. Refined bainitic ferrite lath and retained austenite constituent film provide better low temperature impact toughness compared to base metal. 展开更多
关键词 laser hybrid welding high strength low alloy steel low temperature impact toughness carbide free bainite retained austenite constituent film
下载PDF
Thermal Activation Analyses of Dynamic FractureToughness of High Strength Low Alloy Steels
18
作者 Cunjian LI and Shaohua LI Welding Research Department, Central Iron & Steel Research Institute, Beijing 100081, China Yuqing DENG State Administration of Metallurgical Industry, Beijing 100711, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第2期215-218,共4页
A formula is derived for determining the influence of temperature and loading rate on dynamic fracture toughness of a high strength low alloy steel (HQ785C) from thermal activation analysis of the experimental results... A formula is derived for determining the influence of temperature and loading rate on dynamic fracture toughness of a high strength low alloy steel (HQ785C) from thermal activation analysis of the experimental results of three-point bend specimens as well as introducing an Arrhenius formula. It is shown that the results obtained by the given formula are in good agreement with the experimental ones in the thermal activation region. The present method is also valuable to describe the relationship between dynamic fracture toughness and temperature and loading rate of other high strength low alloy steels. 展开更多
关键词 TEsT GB Thermal Activation Analyses of Dynamic FractureToughness of high strength low alloy steels
下载PDF
Advanced manufacturing technologies of large martensitic stainless steel castings with ultra low carbon and high cleanliness
19
作者 Lou Yanchun Zhang Zhongqiu 《China Foundry》 SCIE CAS 2010年第4期383-391,共9页
The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper.... The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper. The achievements fully satisfeid the technical requirements of the large 700 MW stainless steel hydraulic turbine runner for the Three Gorges Hydropower Station, and become the major technical support for the design and manufacture of the largest 700 MW hydraulic turbine generator unit in the world developed through our own efforts. The characteristics of a new high yield to tensile strength (R p0.2/R m ) ratio and high obdurability martensitic stainless steel with ultra low carbon and high cleanliness are also described. Over the next ten years, the large martensitic stainless steel castings and advanced manufacturing technologies will see a huge demand in clean energy industry such as nuclear power, hydraulic power at home and abroad. Therefore, the new high yield o tensile strength (R p0.2/R m ) ratio and high obdurability martensitic stainless steel materials, the fast and flexible manufacturing technologies of large size castings, and new environment friendly sustainable process will face new challenges and opportunities. 展开更多
关键词 large martensitic stainless steel castings ultra low carbon and high cleanliness turbine runner and blade
下载PDF
Development of Low and Middle Carbon Martensite Spring Steel with High Strength and Toughness for Automobile
20
作者 LiYe-sheng WuZi-ping ZhuYin-lu ChenHui-huang 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第5期105-109,共5页
The conventional middle and high carbon spring steels have some drawbacks in properties, production and application. In order to meet the demands of rapid development of automobile, a new low and middle carbon spring ... The conventional middle and high carbon spring steels have some drawbacks in properties, production and application. In order to meet the demands of rapid development of automobile, a new low and middle carbon spring steel 35Si2CrMnVB, C0.34, Sil.66, MnO.80, CrO.67, V0.13, B0.001, P0.011, S0.014 wt.%, has been developed. Comparison between the new spring steel 35Si2CrMnVB and the conventional spring steel 60Si2MnA, C0.61, Si 1.75, MnO.76, P0.021, S0.018 wt.%, shows that the new spring steel has not only high strength, good ductility, good comprehensive mechanical properties, but also low decarbonization tendency, sufficient hardenability and high elastic sag resistance, etc.. The microstructure change in quenched steel caused by the decreasing of carbon contents is detected through metallographic observation, the new low and middle carbon spring steel 35Si2CrMnVB after quenching is composed of almost lath martensite with high dislocation density and only a little martensite with twin structure. It is testified that to develop low carbon spring steel with more excellent properties for automobile is feasible. 展开更多
关键词 含碳马氏体 合金 弹簧钢 显微结构
下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部