AIM: To investigate the expression of vascular endothelial growth factor (VEGF) and calcium-binding protein S100A4 in pancreatic cancer and their relationship to the clinicopathological parameters and prognosis of pan...AIM: To investigate the expression of vascular endothelial growth factor (VEGF) and calcium-binding protein S100A4 in pancreatic cancer and their relationship to the clinicopathological parameters and prognosis of pancreatic cancer. METHODS: Expression status of VEGF and S100A4 was examined in 62 surgical specimens of primary pancreatic cancer by immunohistochemistry. Correlation between the expression of VEGF and S100A4 and clinicopathological parameters was analyzed. RESULTS: Thirty-eight of 62 (61.3%) specimens of primary pancreatic cancer were positive for S100A4. Thirty-seven (59.7%) specimens showed positive expression of VEGF. The positive correlation between S100A4 and VEGF expression was significant in cancer tissues (P < 0.001). S100A4 expression was significantly correlated with tumor size, TNM stage and poorer prognosis. VEGF expression had a significant correlation with poorer prognosis. The prognosis of 17 S100A4-and VEGF-negative cancer patients was significantly better than that of other patients (P < 0.05). Distant metastasis (P = 0.001), S100A4-(P = 0.008) and VEGF-positive expression (P = 0.016) were significantly independent prognostic predictors (P < 0.05). CONCLUSION: Over-expression of S100A4 and VEGF plays an important role in the development of pancreatic cancer. Combined examination of the two molecules might be useful in evaluating the outcome of patients with pancreatic cancer.展开更多
Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline.This process represents the major risk factor for aging-related diseases such as Alz...Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline.This process represents the major risk factor for aging-related diseases such as Alzheimer’s disease,Parkinson’s disease,and ischemic stroke.The incidence of all these pathologies increases exponentially with age.Research on aging biology has currently focused on elucidating molecular mechanisms leading to the development of those pathologies.Cognitive deficit and neurodegeneration,common features of aging-related pathologies,are related to the alteration of the activity and levels of neurotrophic factors,such as brain-derived neurotrophic factor,nerve growth factor,and glial cell-derived neurotrophic factor.For this reason,treatments that modulate neurotrophin levels have acquired a great deal of interest in preventing neurodegeneration and promoting neural regeneration in several neurological diseases.Those treatments include both the direct administration of neurotrophic factors and the induced expression with viral vectors,neurotrophins’binding with biomaterials or other molecules to increase their bioavailability but also cell-based therapies.Considering neurotrophins’crucial role in aging pathologies,here we discuss the involvement of several neurotrophic factors in the most common brain aging-related diseases and the most recent therapeutic approaches that provide direct and sustained neurotrophic support.展开更多
Background:The transforming growth factor-β(TGF-β)pathway plays a pivotal role in inducing epithelial-mesenchymal transition(EMT),which is a key step in cancer invasion and metastasis.However,the regulatory mechanis...Background:The transforming growth factor-β(TGF-β)pathway plays a pivotal role in inducing epithelial-mesenchymal transition(EMT),which is a key step in cancer invasion and metastasis.However,the regulatory mechanism of TGF-βin inducing EMT in colorectal cancer(CRC)has not been fully elucidated.In previous studies,it was found that S100A8 may regulate EMT.This study aimed to clarify the role of S100A8 in TGF-β-induced EMT and explore the underlying mechanism in CRC.Methods:S100A8 and upstream transcription factor 2(USF2)expression was detected by immunohistochemistry in 412 CRC tissues.Kaplan-Meier survival analysis was performed.In vitro,Western blot,and migration and invasion assays were performed to investigate the effects of S100A8 and USF2 on TGF-β-induced EMT.Mouse metastasis models were used to determine in vivo metastasis ability.Luciferase reporter and chromatin immunoprecipitation assay were used to explore the role of USF2 on S100A8 transcription.Results:During TGF-β-induced EMT in CRC cells,S100A8 and the transcription factor USF2 were upregulated.S100A8 promoted cell migration and invasion and EMT.USF2 transcriptionally regulated S100A8 expression by directly binding to its promoter region.Furthermore,TGF-βenhanced the USF2/S100A8 signaling axis of CRC cells whereas extracellular S100A8 inhibited the USF2/S100A8 axis of CRC cells.S100A8 expression in tumor cells was associated with poor overall survival in CRC.USF2 expression was positively related to S100A8 expression in tumor cells but negatively related to S100A8-positive stromal cells.Conclusions:TGF-βwas found to promote EMT and metastasis through the USF2/S100A8 axis in CRC while extracellular S100A8 suppressed the USF2/S100A8 axis.USF2 was identified as an important switch on the intracellular and extracellular S100A8 feedback loop.展开更多
Background:Building brain reserves before dementia onset could represent a promising strategy to prevent Alzheimer’s disease(AD),while how to initiate early cognitive stimulation is unclear.Given that the immature br...Background:Building brain reserves before dementia onset could represent a promising strategy to prevent Alzheimer’s disease(AD),while how to initiate early cognitive stimulation is unclear.Given that the immature brain is more sensitive to environmental stimuli and that brain dynamics decrease with ageing,we reasoned that it would be effective to initiate cognitive stimulation against AD as early as the fetal period.Methods:After conception,maternal AD transgenic mice(3×Tg AD)were exposed to gestational environment enrichment(GEE)until the day of delivery.The cognitive capacity of the offspring was assessed by the Morris water maze and contextual fear-conditioning tests when the offspring were raised in a standard environment to 7 months of age.Western blotting,immunohistochemistry,real-time PCR,immunoprecipitation,chromatin immunoprecipitation(ChIP)assay,electrophysiology,Golgi staining,activity assays and sandwich ELISA were employed to gain insight into the mechanisms underlying the beneficial effects of GEE on embryos and 7–10-month-old adult offspring.Results:We found that GEE markedly preserved synaptic plasticity and memory capacity with amelioration of hallmark pathologies in 7–10-m-old AD offspring.The beneficial effects of GEE were accompanied by global histone hyperacetylation,including those at bdnf promoter-binding regions,with robust BDNF mRNA and protein expression in both embryo and progeny hippocampus.GEE increased insulin-like growth factor 1(IGF1)and activated its receptor(IGF1R),which phosphorylates Ca^(2+)/calmodulin-dependent kinase IV(CaMKIV)at tyrosine sites and triggers its nuclear translocation,subsequently upregulating histone acetyltransferase(HAT)and BDNF transcription.The upregulation of IGF1 mimicked the effects of GEE,while IGF1R or HAT inhibition during pregnancy abolished the GEE-induced CaMKIV-dependent histone hyperacetylation and BDNF upregulation.Conclusions:These findings suggest that activation of IGF1R/CaMKIV/HAT/BDNF signaling by gestational environment enrichment may serve as a promising strategy to delay AD progression.展开更多
文摘AIM: To investigate the expression of vascular endothelial growth factor (VEGF) and calcium-binding protein S100A4 in pancreatic cancer and their relationship to the clinicopathological parameters and prognosis of pancreatic cancer. METHODS: Expression status of VEGF and S100A4 was examined in 62 surgical specimens of primary pancreatic cancer by immunohistochemistry. Correlation between the expression of VEGF and S100A4 and clinicopathological parameters was analyzed. RESULTS: Thirty-eight of 62 (61.3%) specimens of primary pancreatic cancer were positive for S100A4. Thirty-seven (59.7%) specimens showed positive expression of VEGF. The positive correlation between S100A4 and VEGF expression was significant in cancer tissues (P < 0.001). S100A4 expression was significantly correlated with tumor size, TNM stage and poorer prognosis. VEGF expression had a significant correlation with poorer prognosis. The prognosis of 17 S100A4-and VEGF-negative cancer patients was significantly better than that of other patients (P < 0.05). Distant metastasis (P = 0.001), S100A4-(P = 0.008) and VEGF-positive expression (P = 0.016) were significantly independent prognostic predictors (P < 0.05). CONCLUSION: Over-expression of S100A4 and VEGF plays an important role in the development of pancreatic cancer. Combined examination of the two molecules might be useful in evaluating the outcome of patients with pancreatic cancer.
文摘Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline.This process represents the major risk factor for aging-related diseases such as Alzheimer’s disease,Parkinson’s disease,and ischemic stroke.The incidence of all these pathologies increases exponentially with age.Research on aging biology has currently focused on elucidating molecular mechanisms leading to the development of those pathologies.Cognitive deficit and neurodegeneration,common features of aging-related pathologies,are related to the alteration of the activity and levels of neurotrophic factors,such as brain-derived neurotrophic factor,nerve growth factor,and glial cell-derived neurotrophic factor.For this reason,treatments that modulate neurotrophin levels have acquired a great deal of interest in preventing neurodegeneration and promoting neural regeneration in several neurological diseases.Those treatments include both the direct administration of neurotrophic factors and the induced expression with viral vectors,neurotrophins’binding with biomaterials or other molecules to increase their bioavailability but also cell-based therapies.Considering neurotrophins’crucial role in aging pathologies,here we discuss the involvement of several neurotrophic factors in the most common brain aging-related diseases and the most recent therapeutic approaches that provide direct and sustained neurotrophic support.
基金This work was supported by the grants of the National Natural Science Foundation of China(81772570)the Open Projects of State Key Laboratory of Molecular Oncology(SKL-KF-2019-17)the Program of Introducing Talents of Discipline to Universities(B13026).
文摘Background:The transforming growth factor-β(TGF-β)pathway plays a pivotal role in inducing epithelial-mesenchymal transition(EMT),which is a key step in cancer invasion and metastasis.However,the regulatory mechanism of TGF-βin inducing EMT in colorectal cancer(CRC)has not been fully elucidated.In previous studies,it was found that S100A8 may regulate EMT.This study aimed to clarify the role of S100A8 in TGF-β-induced EMT and explore the underlying mechanism in CRC.Methods:S100A8 and upstream transcription factor 2(USF2)expression was detected by immunohistochemistry in 412 CRC tissues.Kaplan-Meier survival analysis was performed.In vitro,Western blot,and migration and invasion assays were performed to investigate the effects of S100A8 and USF2 on TGF-β-induced EMT.Mouse metastasis models were used to determine in vivo metastasis ability.Luciferase reporter and chromatin immunoprecipitation assay were used to explore the role of USF2 on S100A8 transcription.Results:During TGF-β-induced EMT in CRC cells,S100A8 and the transcription factor USF2 were upregulated.S100A8 promoted cell migration and invasion and EMT.USF2 transcriptionally regulated S100A8 expression by directly binding to its promoter region.Furthermore,TGF-βenhanced the USF2/S100A8 signaling axis of CRC cells whereas extracellular S100A8 inhibited the USF2/S100A8 axis of CRC cells.S100A8 expression in tumor cells was associated with poor overall survival in CRC.USF2 expression was positively related to S100A8 expression in tumor cells but negatively related to S100A8-positive stromal cells.Conclusions:TGF-βwas found to promote EMT and metastasis through the USF2/S100A8 axis in CRC while extracellular S100A8 suppressed the USF2/S100A8 axis.USF2 was identified as an important switch on the intracellular and extracellular S100A8 feedback loop.
基金This work was supported in part by grants from the NSFC(91632305,91632111,31730035 and 81721005)by the Ministry of Science and Technology of China(2016YFC1305800).
文摘Background:Building brain reserves before dementia onset could represent a promising strategy to prevent Alzheimer’s disease(AD),while how to initiate early cognitive stimulation is unclear.Given that the immature brain is more sensitive to environmental stimuli and that brain dynamics decrease with ageing,we reasoned that it would be effective to initiate cognitive stimulation against AD as early as the fetal period.Methods:After conception,maternal AD transgenic mice(3×Tg AD)were exposed to gestational environment enrichment(GEE)until the day of delivery.The cognitive capacity of the offspring was assessed by the Morris water maze and contextual fear-conditioning tests when the offspring were raised in a standard environment to 7 months of age.Western blotting,immunohistochemistry,real-time PCR,immunoprecipitation,chromatin immunoprecipitation(ChIP)assay,electrophysiology,Golgi staining,activity assays and sandwich ELISA were employed to gain insight into the mechanisms underlying the beneficial effects of GEE on embryos and 7–10-month-old adult offspring.Results:We found that GEE markedly preserved synaptic plasticity and memory capacity with amelioration of hallmark pathologies in 7–10-m-old AD offspring.The beneficial effects of GEE were accompanied by global histone hyperacetylation,including those at bdnf promoter-binding regions,with robust BDNF mRNA and protein expression in both embryo and progeny hippocampus.GEE increased insulin-like growth factor 1(IGF1)and activated its receptor(IGF1R),which phosphorylates Ca^(2+)/calmodulin-dependent kinase IV(CaMKIV)at tyrosine sites and triggers its nuclear translocation,subsequently upregulating histone acetyltransferase(HAT)and BDNF transcription.The upregulation of IGF1 mimicked the effects of GEE,while IGF1R or HAT inhibition during pregnancy abolished the GEE-induced CaMKIV-dependent histone hyperacetylation and BDNF upregulation.Conclusions:These findings suggest that activation of IGF1R/CaMKIV/HAT/BDNF signaling by gestational environment enrichment may serve as a promising strategy to delay AD progression.