BACKGROUND: Studies have demonstrated that β-amyloid peptide (Aβ), a characteristic pathological product of Alzheimer's disease (AD), results in neuronal endoplasmic reticulum stress (ERS). However, the mech...BACKGROUND: Studies have demonstrated that β-amyloid peptide (Aβ), a characteristic pathological product of Alzheimer's disease (AD), results in neuronal endoplasmic reticulum stress (ERS). However, the mechanisms of traditional Chinese medicine against ERS in AD are poorly understood. OBJECTIVE: To measure expression levels of protective proteins (GRP78 and GRP94) of ER molecular partners and pro-apoptotic Caspase-12 ER membrane expression following application of traditional Chinese medicine natural cerebrolysin (NC) to treat Aβ1-40-induced ERS. DESIGN, TIME AND SETTING: A parallel-controlled study was performed at the Institute of Integrated Western and Traditional Chinese Medicine, Shenzhen Hospital of Southern Medical University between September 2006 and November 2008. MATERIALS: Sprague Dawley male rats, 6-8 weeks old, were used to harvest tibial and femoral bone marrow. Isolation and purification of mesenchymal stem cells (MSCs) were established from the whole bone marrow by removing non-adherent cells in primary and passage cultures. Aβ1-40 was provided by Sigma, USA. NC was provided by Shenzhen Institute of Integrated Chinese and Western Medicine, China. NC was predominantly composed of Renshen (Radix Ginseng), Tianma (Rhizoma Gastrodiae), and Yinxingye (Ginkgo Leaf) in a proportion of 1 : 2: 2. Following conventional water extraction technology, an extract (1 : 20) was prepared. Six adult, male, New Zealand rabbits underwent intragastric administration of NC extract (0.976 g/kg per day) for 1 month to prepare NC-positive serum, and the remaining 6 rabbits received intragastric administration of physiological saline to prepare normal blank serum. METHODS: A total of 500 nmol/L Aβ1-40 was used to establish ERS models of primary cultured MSCs. AD cell models were incubated with different doses of NC-positive serum (2.5%, 5%, and 10%). MSCs treated with normal blank serum served as normal blank controls. MAIN OUTCOME MEASURES: Reverse transcription-polymerase chain reaction and fluorescent immunocytochemistry were respectively used to measure mRNA and protein expression levels of GRP78, GRP94, and Caspase-12 in MSCs. RESULTS: Following Aβ1-40 exposure, mRNA and protein expression levels of GRP78 and GRP94, as well as Caspase-12, significantly increased (P 〈 0.05), suggesting successful establishment of ERS models. Following NC-positive serum application, mRNA and protein expression levels of GRP78 and GRP94 in MSCs significantly increased (P 〈 0.05 or P 〈 0.01). However, mRNA and protein expression levels of Caspase-12 significantly decreased (P 〈 0.05, or P 〈 0.01) compared with the ERS model group. These effects were dose-dependent. CONCLUSION: NC downregulated Caspase-12 expression and upregulated GRP78 and GRP94 expression in MSCs in a dose-dependent manner under the state of Aβ1-40-induced ERS.展开更多
Mounting evidence indicates that amyloid β protein(Aβ) exerts neurotoxicity by disrupting the blood-brain barrier(BBB) in Alzheimer's disease. Hyperoside has neuroprotective effects both in vitro and in vivo ag...Mounting evidence indicates that amyloid β protein(Aβ) exerts neurotoxicity by disrupting the blood-brain barrier(BBB) in Alzheimer's disease. Hyperoside has neuroprotective effects both in vitro and in vivo against Aβ. Our previous study found that hyperoside suppressed Aβ1-42-induced leakage of the BBB, however, the mechanism remains unclear. In this study, bEnd.3 cells were pretreated with 50, 200, or 500 μM hyperoside for 2 hours, and then exposed to Aβ1-42 for 24 hours. Cell viability was determined using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Flow cytometry and terminal deoxynucleotidyl transferase-mediated d UTP nick-end labeling assay were used to analyze cell apoptosis. Western blot assay was carried out to analyze expression levels of Bax, Bcl-2, cytochrome c, caspase-3, caspse-8, caspase-9, caspase-12, occludin, claudin-5, zonula occludens-1, matrix metalloproteinase-2(MMP-2), and MMP-9. Exposure to Aβ1-42 alone remarkably induced bEnd.3 cell apoptosis; increased ratios of cleaved caspase-9/caspase-9, Bax/Bcl-2, cleav ed caspase-8/caspase-8, and cleaved caspase-12/caspase-12; increased expression of cytochrome c and activity of caspase-3; diminished levels of zonula occludens-1, claudin-5, and occludin; and increased levels of MMP-2 and MMP-9. However, hyperoside pretreatment reversed these changes in a dose-dependent manner. Our findings confirm that hyperoside alleviates fibrillar Aβ1-42-induced BBB disruption, thus offering a feasible therapeutic application in Alzheimer's disease.展开更多
BACKGROUND: Neuronal loss, synapse mutilation, and increasing malnourished axons are pathologically related to Alzheimer's disease. Microtubule-associated protein 2 (MAP2) is of importance for neuronal, axonal, an...BACKGROUND: Neuronal loss, synapse mutilation, and increasing malnourished axons are pathologically related to Alzheimer's disease. Microtubule-associated protein 2 (MAP2) is of importance for neuronal, axonal, and dendritic generation, extension, and stabilization, as well as for the regulation of synaptic plasticity. OBJECTIVE: To investigate the antagonistic effects of natural-cerebrolysin-containing serum on beta amyloid protein 1-40 (Aβ1-40)-induced neurotoxicity from the standpoints of cell proliferation, synaptogenesis, and cytoskeleton formation (MAP2 expression). DESIGN, TIME AND SETTING: A paralleled, controlled, neural cell, and molecular biology experiment was performed at the Institute of Integrated Chinese and Western Medicine, Shenzhen Hospital, Southern Medical University between February 2006 and April 2008. MATERIALS: PC12 cells, derived from the rat central nervous system, were purchased from Shanghai Institute of Cell Biology, Chinese Academy of Sciences, China. A β1-40 was provided by Sigma, USA. Natural-cerebrolysin was provided by Shenzhen Institute of Integrated Chinese and Western Medicine, China. The natural-cerebrolysin was predominantly composed of Renshen (Radix Ginseng), Tianma (Rhizoma Gastrodiae), and Yixingye (Ginkgo Leaf) in a proportion of 1:2:2. Following conventional water extraction technology, an extract (1:20) was prepared. Each gram of extract equaled 20 grams of crude drug. In a total of 12 adult male New Zealand rabbits, six underwent intragastric administration of natural-cerebrolysin extract for 1 month to prepare natural-cerebrolysin-containing serum, and the remaining six rabbits received intragastric administration of physiological saline to prepare normal blank serum. METHODS: An AIzheimer's disease in vitro model was induced in PC12 cells using Aβ1-40. The cells were incubated with varying doses of natural-cerebrolysin-containing serum (2.5%, 5%, and 10%). Normal blank serum-treated PC12 cells served as a blank control group. MAIN OUTCOME MEASURES: Through the use of inverted phase contrast microscope, cell morphology and neurite growth were observed, neurite length was measured, and the percentage of neurite-positive cells was calculated. Cell proliferation rate was determined by MTT assay, and MAP 2 expression was detected by fluorescent immunocytochemistry. RESULTS: Following Aβ1-40 treatments, some PC12 cells were apoptotic/dying, and only a few short neurites were observed. Following interventions with natural-cerebrolysin-containing serum, the PC12 cells proliferated, there was an increased number of neurites, and neurite length was enhanced. After middle- and high-dose natural-cerebrolysin treatments, the percentage of neurite-positive cells, as well as the average length of neurites, was significantly greater than the normal blank serum-treated PC12 cells (P 〈 0.05 or P 〈 0.01). Compared with the blank control group, MAP2 expression in the Aβ1-40-treated PC12 cells was significantly inhibited, and the cell proliferation rate was significantly decreased (P 〈 0.01). Following incubations with natural-cerebrolysin-containing serum, MAP2 expression and cell proliferation rate in the PC12 cells were significantly increased in a dose-dependent manner, compared with treatments with blank control serum (P 〈 0.05 or P 〈 0.01 ). CONCLUSION: Natural-cerebrolysin exhibited antagonistic effects on neurotoxicity in Aβ1-40 induced Alzheimer's disease in vitro models. These effects were likely related to cell proliferation and the upregulation of intracellular MAP2 expression.展开更多
基金the National Natural Science Foundation of China, No. 30973779the National Special Planning Project for Traditional Chinese Medicine of China, No.02-03LP41the Key Program of Scientific Planning of Guangdong Province, No. 2006B35630007
文摘BACKGROUND: Studies have demonstrated that β-amyloid peptide (Aβ), a characteristic pathological product of Alzheimer's disease (AD), results in neuronal endoplasmic reticulum stress (ERS). However, the mechanisms of traditional Chinese medicine against ERS in AD are poorly understood. OBJECTIVE: To measure expression levels of protective proteins (GRP78 and GRP94) of ER molecular partners and pro-apoptotic Caspase-12 ER membrane expression following application of traditional Chinese medicine natural cerebrolysin (NC) to treat Aβ1-40-induced ERS. DESIGN, TIME AND SETTING: A parallel-controlled study was performed at the Institute of Integrated Western and Traditional Chinese Medicine, Shenzhen Hospital of Southern Medical University between September 2006 and November 2008. MATERIALS: Sprague Dawley male rats, 6-8 weeks old, were used to harvest tibial and femoral bone marrow. Isolation and purification of mesenchymal stem cells (MSCs) were established from the whole bone marrow by removing non-adherent cells in primary and passage cultures. Aβ1-40 was provided by Sigma, USA. NC was provided by Shenzhen Institute of Integrated Chinese and Western Medicine, China. NC was predominantly composed of Renshen (Radix Ginseng), Tianma (Rhizoma Gastrodiae), and Yinxingye (Ginkgo Leaf) in a proportion of 1 : 2: 2. Following conventional water extraction technology, an extract (1 : 20) was prepared. Six adult, male, New Zealand rabbits underwent intragastric administration of NC extract (0.976 g/kg per day) for 1 month to prepare NC-positive serum, and the remaining 6 rabbits received intragastric administration of physiological saline to prepare normal blank serum. METHODS: A total of 500 nmol/L Aβ1-40 was used to establish ERS models of primary cultured MSCs. AD cell models were incubated with different doses of NC-positive serum (2.5%, 5%, and 10%). MSCs treated with normal blank serum served as normal blank controls. MAIN OUTCOME MEASURES: Reverse transcription-polymerase chain reaction and fluorescent immunocytochemistry were respectively used to measure mRNA and protein expression levels of GRP78, GRP94, and Caspase-12 in MSCs. RESULTS: Following Aβ1-40 exposure, mRNA and protein expression levels of GRP78 and GRP94, as well as Caspase-12, significantly increased (P 〈 0.05), suggesting successful establishment of ERS models. Following NC-positive serum application, mRNA and protein expression levels of GRP78 and GRP94 in MSCs significantly increased (P 〈 0.05 or P 〈 0.01). However, mRNA and protein expression levels of Caspase-12 significantly decreased (P 〈 0.05, or P 〈 0.01) compared with the ERS model group. These effects were dose-dependent. CONCLUSION: NC downregulated Caspase-12 expression and upregulated GRP78 and GRP94 expression in MSCs in a dose-dependent manner under the state of Aβ1-40-induced ERS.
基金financially supported by the National Natural Science Foundation of China,No.81573771the Natural Science Foundation of Jiangsu Province of China,No.BK20151599
文摘Mounting evidence indicates that amyloid β protein(Aβ) exerts neurotoxicity by disrupting the blood-brain barrier(BBB) in Alzheimer's disease. Hyperoside has neuroprotective effects both in vitro and in vivo against Aβ. Our previous study found that hyperoside suppressed Aβ1-42-induced leakage of the BBB, however, the mechanism remains unclear. In this study, bEnd.3 cells were pretreated with 50, 200, or 500 μM hyperoside for 2 hours, and then exposed to Aβ1-42 for 24 hours. Cell viability was determined using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Flow cytometry and terminal deoxynucleotidyl transferase-mediated d UTP nick-end labeling assay were used to analyze cell apoptosis. Western blot assay was carried out to analyze expression levels of Bax, Bcl-2, cytochrome c, caspase-3, caspse-8, caspase-9, caspase-12, occludin, claudin-5, zonula occludens-1, matrix metalloproteinase-2(MMP-2), and MMP-9. Exposure to Aβ1-42 alone remarkably induced bEnd.3 cell apoptosis; increased ratios of cleaved caspase-9/caspase-9, Bax/Bcl-2, cleav ed caspase-8/caspase-8, and cleaved caspase-12/caspase-12; increased expression of cytochrome c and activity of caspase-3; diminished levels of zonula occludens-1, claudin-5, and occludin; and increased levels of MMP-2 and MMP-9. However, hyperoside pretreatment reversed these changes in a dose-dependent manner. Our findings confirm that hyperoside alleviates fibrillar Aβ1-42-induced BBB disruption, thus offering a feasible therapeutic application in Alzheimer's disease.
基金Supported by:Scientific and Technological Foundation of the National Administration of Traditional Chinese Medicine of China,No.02-03LP41the Scientific and Technological Key Project of Guangdong Province,No. 2006B35630007
文摘BACKGROUND: Neuronal loss, synapse mutilation, and increasing malnourished axons are pathologically related to Alzheimer's disease. Microtubule-associated protein 2 (MAP2) is of importance for neuronal, axonal, and dendritic generation, extension, and stabilization, as well as for the regulation of synaptic plasticity. OBJECTIVE: To investigate the antagonistic effects of natural-cerebrolysin-containing serum on beta amyloid protein 1-40 (Aβ1-40)-induced neurotoxicity from the standpoints of cell proliferation, synaptogenesis, and cytoskeleton formation (MAP2 expression). DESIGN, TIME AND SETTING: A paralleled, controlled, neural cell, and molecular biology experiment was performed at the Institute of Integrated Chinese and Western Medicine, Shenzhen Hospital, Southern Medical University between February 2006 and April 2008. MATERIALS: PC12 cells, derived from the rat central nervous system, were purchased from Shanghai Institute of Cell Biology, Chinese Academy of Sciences, China. A β1-40 was provided by Sigma, USA. Natural-cerebrolysin was provided by Shenzhen Institute of Integrated Chinese and Western Medicine, China. The natural-cerebrolysin was predominantly composed of Renshen (Radix Ginseng), Tianma (Rhizoma Gastrodiae), and Yixingye (Ginkgo Leaf) in a proportion of 1:2:2. Following conventional water extraction technology, an extract (1:20) was prepared. Each gram of extract equaled 20 grams of crude drug. In a total of 12 adult male New Zealand rabbits, six underwent intragastric administration of natural-cerebrolysin extract for 1 month to prepare natural-cerebrolysin-containing serum, and the remaining six rabbits received intragastric administration of physiological saline to prepare normal blank serum. METHODS: An AIzheimer's disease in vitro model was induced in PC12 cells using Aβ1-40. The cells were incubated with varying doses of natural-cerebrolysin-containing serum (2.5%, 5%, and 10%). Normal blank serum-treated PC12 cells served as a blank control group. MAIN OUTCOME MEASURES: Through the use of inverted phase contrast microscope, cell morphology and neurite growth were observed, neurite length was measured, and the percentage of neurite-positive cells was calculated. Cell proliferation rate was determined by MTT assay, and MAP 2 expression was detected by fluorescent immunocytochemistry. RESULTS: Following Aβ1-40 treatments, some PC12 cells were apoptotic/dying, and only a few short neurites were observed. Following interventions with natural-cerebrolysin-containing serum, the PC12 cells proliferated, there was an increased number of neurites, and neurite length was enhanced. After middle- and high-dose natural-cerebrolysin treatments, the percentage of neurite-positive cells, as well as the average length of neurites, was significantly greater than the normal blank serum-treated PC12 cells (P 〈 0.05 or P 〈 0.01). Compared with the blank control group, MAP2 expression in the Aβ1-40-treated PC12 cells was significantly inhibited, and the cell proliferation rate was significantly decreased (P 〈 0.01). Following incubations with natural-cerebrolysin-containing serum, MAP2 expression and cell proliferation rate in the PC12 cells were significantly increased in a dose-dependent manner, compared with treatments with blank control serum (P 〈 0.05 or P 〈 0.01 ). CONCLUSION: Natural-cerebrolysin exhibited antagonistic effects on neurotoxicity in Aβ1-40 induced Alzheimer's disease in vitro models. These effects were likely related to cell proliferation and the upregulation of intracellular MAP2 expression.