期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
废水中和过程的RBF神经网络预测控制 被引量:6
1
作者 周洪煜 梁东义 周松杰 《控制工程》 CSCD 北大核心 2014年第1期79-83,共5页
废水中和过程有较强的非线性、时变性和滞后特性,对于过程模型的辨识与控制较为困难,采用常规的线性化模型或传统PID控制方法存在模型过于复杂,算法难以在线实施,控制精度不能保证等问题,很难取得满意的控制效果、针对该问题,应用酸碱... 废水中和过程有较强的非线性、时变性和滞后特性,对于过程模型的辨识与控制较为困难,采用常规的线性化模型或传统PID控制方法存在模型过于复杂,算法难以在线实施,控制精度不能保证等问题,很难取得满意的控制效果、针对该问题,应用酸碱中和的强酸当量模型,提出了一种基于敏感度(Sensitivity Analysis,SA)和动态粒子群优化算法(Dynamic Particle Swarm Optimization,DPSO)相结合的RBF神经网络模型辨识方法,通过调整网络结构和辨识出系统的滞后时间来提高模型辨识效率和预测精度,将RBF神经网络辨识器与神经网络控制器相结合构成电厂废水处理pH中和过程的预测控制系统。经过仿真研究和试验验证,与电厂实际应用的PID控制方法相比较,该方法能有效地对pH值进行控制,并实现较小的控制误差和节约药剂的效果。 展开更多
关键词 迟延系统 pH中和 sa—dpso算法 模型辨识 预测控制 RBF神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部