期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于自适应多元多尺度熵的心电信号分类研究 被引量:2
1
作者 张浪飞 李诗楠 +1 位作者 梁竹关 丁洪伟 《计算机应用研究》 CSCD 北大核心 2022年第5期1505-1509,共5页
针对目前单通道心电信号识别精度不高、现存多元分解方法效果不佳、多元非线性心电信号分析复杂等问题,提出了一种基于自适应多元多尺度色散熵的心电信号分类方法。首先利用频谱分析,创新性地引入了正弦辅助多元经验模态分解方法,对心... 针对目前单通道心电信号识别精度不高、现存多元分解方法效果不佳、多元非线性心电信号分析复杂等问题,提出了一种基于自适应多元多尺度色散熵的心电信号分类方法。首先利用频谱分析,创新性地引入了正弦辅助多元经验模态分解方法,对心电信号进行分解得到多元模态分量;然后结合多模态分解和色散熵的优越性,通过累加多元本征模态分量代替粗粒化采样,提出了自适应多元多尺度色散熵的方法获取特征熵值;最后将特征输入到多个分类器上进行分类,通过实验对比分析,在模拟信号和MIT-BIH数据上验证该方案的有效性。 展开更多
关键词 心电信号 模态混叠 sa-memd 信号分类
下载PDF
改进的正弦辅助多元经验模式分解及其在滚动轴承故障诊断中的应用 被引量:2
2
作者 吴利锋 吕勇 +2 位作者 袁锐 朱熹 游俊 《中国机械工程》 EI CAS CSCD 北大核心 2022年第11期1336-1344,共9页
正弦辅助多元经验模式分解算法(SA-MEMD)通过在额外的通道中加入正弦辅助信号来减少模式混合,但该算法对噪声敏感,辅助信号的主频率比需要根据经验确定,为此,提出了一种改进的正弦辅助多元经验模式分解算法。首先使用非局部均值降噪对... 正弦辅助多元经验模式分解算法(SA-MEMD)通过在额外的通道中加入正弦辅助信号来减少模式混合,但该算法对噪声敏感,辅助信号的主频率比需要根据经验确定,为此,提出了一种改进的正弦辅助多元经验模式分解算法。首先使用非局部均值降噪对原始信号进行预处理,减少噪声对算法的干扰,其次使用短时傅里叶变换确定信号频谱范围,然后以最小集成EMD能量熵准则选择最优主频率比,最后根据正弦辅助多元经验模式分解算法的步骤进行信号处理。模拟信号和实际信号的对比分析结果证明,改进的方法可以减少传统的多元经验模式分解方法存在的模式混合现象。 展开更多
关键词 故障诊断 正弦辅助多元经验模式分解 模式混合 短时傅里叶变换 能量熵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部