期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
SADBN及其在滚动轴承故障分类识别中的应用 被引量:18
1
作者 杨宇 罗鹏 +1 位作者 甘磊 程军圣 《振动与冲击》 EI CSCD 北大核心 2019年第15期11-16,26,共7页
传统的智能诊断方法一般都是基于"特征提取+分类器"模型,其核心在于特征值的提取以及分类器的设计。针对不同的诊断对象,通常需要根据先验知识提取不同的故障特征值,这必将给最终的诊断结果带来诊断误差;与此同时,传统的分类... 传统的智能诊断方法一般都是基于"特征提取+分类器"模型,其核心在于特征值的提取以及分类器的设计。针对不同的诊断对象,通常需要根据先验知识提取不同的故障特征值,这必将给最终的诊断结果带来诊断误差;与此同时,传统的分类器一般使用浅层模型,这使得其难以表征信号与装备运行状况之间复杂的映射关系。作为深度学习算法典型代表之一的深度信念网络(Deep Belief Network,DBN),可以直接从原始信号中提取特征并具有深度学习能力,因而已受到越来越多研究者的关注。但是DBN依然存在网络结构需要人为设定的缺陷,这也限制了DBN在工程实际中的应用。为解决DBN网络结构难以确定及如何提升其在工程实际应用中的诊断效率问题,提出了一种新的深度信念网络,即结构自适应深度信念网络(Structure Adaptive Deep Belief Network,SADBN)。与DBN相比,SADBN可以自适应地确定网络结构,有效提高诊断效率。对滚动轴承故障振动信号的分析结果表明了改进网络的有效性。 展开更多
关键词 深度学习 DBN 网络结构 sadbn 滚动轴承故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部