Multimodal lung tumor medical images can provide anatomical and functional information for the same lesion.Such as Positron Emission Computed Tomography(PET),Computed Tomography(CT),and PET-CT.How to utilize the lesio...Multimodal lung tumor medical images can provide anatomical and functional information for the same lesion.Such as Positron Emission Computed Tomography(PET),Computed Tomography(CT),and PET-CT.How to utilize the lesion anatomical and functional information effectively and improve the network segmentation performance are key questions.To solve the problem,the Saliency Feature-Guided Interactive Feature Enhancement Lung Tumor Segmentation Network(Guide-YNet)is proposed in this paper.Firstly,a double-encoder single-decoder U-Net is used as the backbone in this model,a single-coder single-decoder U-Net is used to generate the saliency guided feature using PET image and transmit it into the skip connection of the backbone,and the high sensitivity of PET images to tumors is used to guide the network to accurately locate lesions.Secondly,a Cross Scale Feature Enhancement Module(CSFEM)is designed to extract multi-scale fusion features after downsampling.Thirdly,a Cross-Layer Interactive Feature Enhancement Module(CIFEM)is designed in the encoder to enhance the spatial position information and semantic information.Finally,a Cross-Dimension Cross-Layer Feature Enhancement Module(CCFEM)is proposed in the decoder,which effectively extractsmultimodal image features through global attention and multi-dimension local attention.The proposed method is verified on the lung multimodal medical image datasets,and the results showthat theMean Intersection overUnion(MIoU),Accuracy(Acc),Dice Similarity Coefficient(Dice),Volumetric overlap error(Voe),Relative volume difference(Rvd)of the proposed method on lung lesion segmentation are 87.27%,93.08%,97.77%,95.92%,89.28%,and 88.68%,respectively.It is of great significance for computer-aided diagnosis.展开更多
Unconstrained face images are interfered by many factors such as illumination,posture,expression,occlusion,age,accessories and so on,resulting in the randomness of the noise pollution implied in the original samples.I...Unconstrained face images are interfered by many factors such as illumination,posture,expression,occlusion,age,accessories and so on,resulting in the randomness of the noise pollution implied in the original samples.In order to improve the sample quality,a weighted block cooperative sparse representation algorithm is proposed based on visual saliency dictionary.First,the algorithm uses the biological visual attention mechanism to quickly and accurately obtain the face salient target and constructs the visual salient dictionary.Then,a block cooperation framework is presented to perform sparse coding for different local structures of human face,and the weighted regular term is introduced in the sparse representation process to enhance the identification of information hidden in the coding coefficients.Finally,by synthesising the sparse representation results of all visual salient block dictionaries,the global coding residual is obtained and the class label is given.The experimental results on four databases,that is,AR,extended Yale B,LFW and PubFig,indicate that the combination of visual saliency dictionary,block cooperative sparse representation and weighted constraint coding can effectively enhance the accuracy of sparse representation of the samples to be tested and improve the performance of unconstrained face recognition.展开更多
Visual attention is a mechanism that enables the visual system to detect potentially important objects in complex environment. Most computational visual attention models are designed with inspirations from mammalian v...Visual attention is a mechanism that enables the visual system to detect potentially important objects in complex environment. Most computational visual attention models are designed with inspirations from mammalian visual systems.However, electrophysiological and behavioral evidences indicate that avian species are animals with high visual capability that can process complex information accurately in real time. Therefore,the visual system of the avian species, especially the nuclei related to the visual attention mechanism, are investigated in this paper. Afterwards, a hierarchical visual attention model is proposed for saliency detection. The optic tectum neuron responses are computed and the self-information is used to compute primary saliency maps in the first hierarchy. The "winner-takeall" network in the tecto-isthmal projection is simulated and final saliency maps are estimated with the regularized random walks ranking in the second hierarchy. Comparison results verify that the proposed model, which can define the focus of attention accurately, outperforms several state-of-the-art models.This study provides insights into the relationship between the visual attention mechanism and the avian visual pathways. The computational visual attention model may reveal the underlying neural mechanism of the nuclei for biological visual attention.展开更多
Craters are salient terrain features on planetary surfaces, and provide useful information about the relative dating of geological unit of planets. In addition, they are ideal landmarks for spacecraft navigation. Due ...Craters are salient terrain features on planetary surfaces, and provide useful information about the relative dating of geological unit of planets. In addition, they are ideal landmarks for spacecraft navigation. Due to low contrast and uneven illumination, automatic extraction of craters remains a challenging task. This paper presents a saliency detection method for crater edges and a feature matching algorithm based on edges informa- tion. The craters are extracted through saliency edges detection, edge extraction and selection, feature matching of the same crater edges and robust ellipse fitting. In the edges matching algorithm, a crater feature model is proposed by analyzing the relationship between highlight region edges and shadow region ones. Then, crater edges are paired through the effective matching algorithm. Experiments of real planetary images show that the proposed approach is robust to different lights and topographies, and the detection rate is larger than 90%.展开更多
Reliable saliency detection can be used to quickly and effectively locate objects in images. In this paper, a novel algorithm for saliency detection based on superpixels clustering and stereo disparity (SDC) is prop...Reliable saliency detection can be used to quickly and effectively locate objects in images. In this paper, a novel algorithm for saliency detection based on superpixels clustering and stereo disparity (SDC) is proposed. Firstly, we use an improved superpixels clustering method to decompose the given image. Then, the disparity of each superpixel is computed by a modified stereo correspondence algorithm. Finally, a new measure which combines stereo disparity with color contrast and spatial coherence is defined to evaluate the saliency of each superpixel. From the experiments we can see that regions with high disparity can get higher saliency value, and the saliency maps have the same resolution with the source images, objects in the map have clear boundaries. Due to the use of superpixel and stereo disparity information, the proposed method is computationally efficient and outperforms some state-of-the-art color- based saliency detection methods.展开更多
To evaluate the quality of blurred images effectively,this study proposes a no-reference blur assessment method based on gradient distortion measurement and salient region maps.First,a Gaussian low-pass filter is used...To evaluate the quality of blurred images effectively,this study proposes a no-reference blur assessment method based on gradient distortion measurement and salient region maps.First,a Gaussian low-pass filter is used to construct a reference image by blurring a given image.Gradient similarity is included to obtain the gradient distortion measurement map,which can finely reflect the smallest possible changes in textures and details.Second,a saliency model is utilized to calculate image saliency.Specifically,an adaptive method is used to calculate the specific salient threshold of the blurred image,and the blurred image is binarized to yield the salient region map.Block-wise visual saliency serves as the weight to obtain the final image quality.Experimental results based on the image and video engineering database,categorial image quality database,and camera image database demonstrate that the proposed method correlates well with human judgment.Its computational complexity is also relatively low.展开更多
Based on salient visual regions for mobile robot navigation in unknown environments, a new place recognition system was presented. The system uses monocular camera to acquire omni-directional images of the environment...Based on salient visual regions for mobile robot navigation in unknown environments, a new place recognition system was presented. The system uses monocular camera to acquire omni-directional images of the environment where the robot locates. Salient local regions are detected from these images using center-surround difference method, which computes opponencies of color and texture among multi-scale image spaces. And then they are organized using hidden Markov model (HMM) to form the vertex of topological map. So localization, that is place recognition in our system, can be converted to evaluation of HMM. Experimental results show that the saliency detection is immune to the changes of scale, 2D rotation and viewpoint etc. The created topological map has smaller size and a higher ratio of recognition is obtained.展开更多
Pests detecting is an important research subject in grain storage field.In the past decades,many edge detection methods have been applied to the edge detection of stored grain pests.Although some of them can realize t...Pests detecting is an important research subject in grain storage field.In the past decades,many edge detection methods have been applied to the edge detection of stored grain pests.Although some of them can realize the stored grain pests detecting,precision and robustness are not good enough.Spectral residual(SR)saliency edge detection defines the logarithmic spectrumof image as novelty part of the image information.The remaining spectrumis converted to the airspace to obtain edge detection results.SR algorithm is completely based on frequency domain processing.It not only can effectively simplify the target detection algorithm,but also can improve the effectiveness of target recognition.The experimental results show that the edge results of stored grain pests detected by SR method are effective and stable.展开更多
Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high ...Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high processing times and low vehicle detection performance.To address this issue,a visual saliency and deep sparse convolution hierarchical model based vehicle detection algorithm is proposed.A visual saliency calculation is firstly used to generate a small vehicle candidate area.The vehicle candidate sub images are then loaded into a sparse deep convolution hierarchical model with an SVM-based classifier to perform the final detection.The experimental results demonstrate that the proposed method is with 94.81% correct rate and 0.78% false detection rate on the existing datasets and the real road pictures captured by our group,which outperforms the existing state-of-the-art algorithms.More importantly,high discriminative multi-scale features are generated by deep sparse convolution network which has broad application prospects in target recognition in the field of intelligent vehicle.展开更多
A new method for automatic salient object segmentation is presented.Salient object segmentation is an important research area in the field of object recognition,image retrieval,image editing,scene reconstruction,and 2...A new method for automatic salient object segmentation is presented.Salient object segmentation is an important research area in the field of object recognition,image retrieval,image editing,scene reconstruction,and 2D/3D conversion.In this work,salient object segmentation is performed using saliency map and color segmentation.Edge,color and intensity feature are extracted from mean shift segmentation(MSS)image,and saliency map is created using these features.First average saliency per segment image is calculated using the color information from MSS image and generated saliency map.Then,second average saliency per segment image is calculated by applying same procedure for the first image to the thresholding,labeling,and hole-filling applied image.Thresholding,labeling and hole-filling are applied to the mean image of the generated two images to get the final salient object segmentation.The effectiveness of proposed method is proved by showing 80%,89%and 80%of precision,recall and F-measure values from the generated salient object segmentation image and ground truth image.展开更多
This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regio...This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regions, allowing more processing is reserved only for these regions. The speed of object segmentation is significantly improved by the region proposal method.By the combination of the region proposal method based on the convolutional neural network and superpixel method, the category and location information can be used to segment objects and image redundancy is significantly reduced. The processing time is reduced considerably by this to achieve the real time. Experiments show that the proposed method can segment the interested target object in real time on an ordinary laptop.展开更多
In order to further improve the efficiency of video compression, we introduce a perceptual characteristics of Human Visual System (HVS) to video coding, and propose a novel video coding rate control algorithm based on...In order to further improve the efficiency of video compression, we introduce a perceptual characteristics of Human Visual System (HVS) to video coding, and propose a novel video coding rate control algorithm based on human visual saliency model in H.264/AVC. Firstly, we modifie Itti's saliency model. Secondly, target bits of each frame are allocated through the correlation of saliency region between the current and previous frame, and the complexity of each MB is modified through the saliency value and its Mean Absolute Difference (MAD) value. Lastly, the algorithm was implemented in JVT JM12.2. Simulation results show that, comparing with traditional rate control algorithm, the proposed one can reduce the coding bit rate and improve the reconstructed video subjective quality, especially for visual saliency region. It is very suitable for wireless video transmission.展开更多
In order to better represent infrared target features under different environments, a saliency detection method based on region covariance and global feature is proposed. Firstly, the region covariance features on dif...In order to better represent infrared target features under different environments, a saliency detection method based on region covariance and global feature is proposed. Firstly, the region covariance features on different scale spaces and different image regions are extracted and transformed into sigma features,then combined with central position feature, the local salient map is generated. Next, a global salient map is generated by gray contrast and density estimation. Finally, the saliency detection result of infrared images is obtained by fusing the local and global salient maps. The experimental results show that the salient map of the proposed method has complete target features and obvious edges,and the proposed method is better than the state of art method both qualitatively and quantitatively.展开更多
Melanoma,due to its higher mortality rate,is considered as one of the most pernicious types of skin cancers,mostly affecting the white populations.It has been reported a number of times and is now widely accepted,that...Melanoma,due to its higher mortality rate,is considered as one of the most pernicious types of skin cancers,mostly affecting the white populations.It has been reported a number of times and is now widely accepted,that early detection of melanoma increases the chances of the subject’s survival.Computer-aided diagnostic systems help the experts in diagnosing the skin lesion at earlier stages using machine learning techniques.In thiswork,we propose a framework that accurately segments,and later classifies,the lesion using improved image segmentation and fusion methods.The proposed technique takes an image and passes it through two methods simultaneously;one is the weighted visual saliency-based method,and the second is improved HDCT based saliency estimation.The resultant image maps are later fused using the proposed image fusion technique to generate a localized lesion region.The resultant binary image is later mapped back to the RGB image and fed into the Inception-ResNet-V2 pre-trained model-trained by applying transfer learning.The simulation results show improved performance compared to several existing methods.展开更多
This work presents a robust and rotationally invariant shape descriptor, namely perception pronouncement (called p2), to mathematically model the eye fixations, p2 takes two criteria - the local consideration of sur...This work presents a robust and rotationally invariant shape descriptor, namely perception pronouncement (called p2), to mathematically model the eye fixations, p2 takes two criteria - the local consideration of surface curvature and the global consideration of view- independent visibility - into account. Differing from existing works that often computed the intrinsic surface property of visibility in imaging space, a novel approach is proposed to approxi- mate the attribute in object space using Gauss map and Ray tracing. With the presented shape descriptor, mesh saliency detection, which refers to reasoning about which regions or points of a surface axe important, is more sensible, especially when 3D models fall into two categories: (1) the models possess significant interior/exterior structures; (2) the models contain regions where the contrast in visibility is high. For the models that are out of the categories, saliencies achieved by our approach are comparable to or even better than those of state-of-the-axt methods.展开更多
Straightforward image resizing operators without considering image contents (e.g., uniform scaling) cannot usually produce satisfactory results, while content-aware image retargeting aims to arbitrarily change image...Straightforward image resizing operators without considering image contents (e.g., uniform scaling) cannot usually produce satisfactory results, while content-aware image retargeting aims to arbitrarily change image size while preserving visually prominent features. In this paper, a cluster-based saliency-guided seam carving algorithm for content- aware image retargeting is proposed. To cope with the main drawback of the original seam carving algorithm relying on only gradient-based image importance map, we integrate a gradient-based map and a cluster-based saliency map to generate a more reliable importance map, resulting in better single image retargeting results. Experimental results have demonstrated the efficacy of the proposed algorithm.展开更多
Saliency detection models, which are used to extract salient regions in visual scenes, are widely used in various multimedia processing applications. It has attracted much attention in the area of computer vision over...Saliency detection models, which are used to extract salient regions in visual scenes, are widely used in various multimedia processing applications. It has attracted much attention in the area of computer vision over the past decades. Since most images or videos over the Internet are stored in compressed domains such as images in JPEG format and videos in MPEG2 format, H.264 format, and MPEG4 Visual format, many saliency detection models have been proposed in the compressed domain recently. We provide a review of our works on saliency detection models in the compressed domain in this paper.Besides, we introduce some commonly used fusion strategies to combine spatial saliency map and temporal saliency map to compute the final video saliency map.展开更多
Flower Image Classification is a Fine-Grained Classification problem.The main difficulty of Fine-Grained Classification is the large inter-class similarity and the inner-class difference.In this paper,we propose a new...Flower Image Classification is a Fine-Grained Classification problem.The main difficulty of Fine-Grained Classification is the large inter-class similarity and the inner-class difference.In this paper,we propose a new algorithm based on Saliency Map and PCANet to overcome the difficulty.This algorithm mainly consists of two parts:flower region selection,flower feature learning.In first part,we combine saliency map with gray-scale map to select flower region.In second part,we use the flower region as input to train the PCANet which is a simple deep learning network for learning flower feature automatically,then a 102-way softmax layer that follow the PCANet achieve classification.Our approach achieves 84.12%accuracy on Oxford 17 Flowers dataset.The results show that a combination of Saliency Map and simple deep learning network PCANet can applies to flower image classification problem.展开更多
Salient detection approaches mainly use single local cues or global cues as its inputs features to detect salient objects,which are sensitive to complex background,so the effect of detection were not satisfactory.In t...Salient detection approaches mainly use single local cues or global cues as its inputs features to detect salient objects,which are sensitive to complex background,so the effect of detection were not satisfactory.In this paper,we investigate the traits of saliency detection and observed the two following facts:Firstly,high-level saliency cues achieve better saliency detection results than low-level saliency cues.Secondly,multi-difference cues achieve better saliency detection results than single difference cues.Based on deeply analysis,we proposed an image saliency detection algorithm through high level multi-difference cues(HMDS).By using multi-difference,not only HMDS could remove the non-salient region effectively,but also it could enhance the pixel value of salient region at the same time.In order to evaluate the performance of HMDS,the proposed method is compared with seven state-of-the-art algorithms on five popular datasets.The final experimental results show that the proposed method performs effectiveness,and will have a perfect application prospect.展开更多
To address the problem of using fixed feature and single apparent model which is difficult to adapt to the complex scenarios, a Kernelized correlation filter target tracking algorithm based on online saliency feature ...To address the problem of using fixed feature and single apparent model which is difficult to adapt to the complex scenarios, a Kernelized correlation filter target tracking algorithm based on online saliency feature selection and fusion is proposed. It combined the correlation filter tracking framework and the salient feature model of the target. In the tracking process, the maximum Kernel correlation filter response values of different feature models were calculated respectively, and the response weights were dynamically set according to the saliency of different features. According to the filter response value, the final target position was obtained, which improves the target positioning accuracy. The target model was dynamically updated in an online manner based on the feature saliency measurement results. The experimental results show that the proposed method can effectively utilize the distinctive feature fusion to improve the tracking effect in complex environments.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant No.62062003)Natural Science Foundation of Ningxia(Grant No.2023AAC03293).
文摘Multimodal lung tumor medical images can provide anatomical and functional information for the same lesion.Such as Positron Emission Computed Tomography(PET),Computed Tomography(CT),and PET-CT.How to utilize the lesion anatomical and functional information effectively and improve the network segmentation performance are key questions.To solve the problem,the Saliency Feature-Guided Interactive Feature Enhancement Lung Tumor Segmentation Network(Guide-YNet)is proposed in this paper.Firstly,a double-encoder single-decoder U-Net is used as the backbone in this model,a single-coder single-decoder U-Net is used to generate the saliency guided feature using PET image and transmit it into the skip connection of the backbone,and the high sensitivity of PET images to tumors is used to guide the network to accurately locate lesions.Secondly,a Cross Scale Feature Enhancement Module(CSFEM)is designed to extract multi-scale fusion features after downsampling.Thirdly,a Cross-Layer Interactive Feature Enhancement Module(CIFEM)is designed in the encoder to enhance the spatial position information and semantic information.Finally,a Cross-Dimension Cross-Layer Feature Enhancement Module(CCFEM)is proposed in the decoder,which effectively extractsmultimodal image features through global attention and multi-dimension local attention.The proposed method is verified on the lung multimodal medical image datasets,and the results showthat theMean Intersection overUnion(MIoU),Accuracy(Acc),Dice Similarity Coefficient(Dice),Volumetric overlap error(Voe),Relative volume difference(Rvd)of the proposed method on lung lesion segmentation are 87.27%,93.08%,97.77%,95.92%,89.28%,and 88.68%,respectively.It is of great significance for computer-aided diagnosis.
基金Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20170765National Natural Science Foundation of China,Grant/Award Number:61703201+1 种基金Future Network Scientific Research Fund Project,Grant/Award Number:FNSRFP2021YB26Science Foundation of Nanjing Institute of Technology,Grant/Award Numbers:ZKJ202002,ZKJ202003,and YKJ202019。
文摘Unconstrained face images are interfered by many factors such as illumination,posture,expression,occlusion,age,accessories and so on,resulting in the randomness of the noise pollution implied in the original samples.In order to improve the sample quality,a weighted block cooperative sparse representation algorithm is proposed based on visual saliency dictionary.First,the algorithm uses the biological visual attention mechanism to quickly and accurately obtain the face salient target and constructs the visual salient dictionary.Then,a block cooperation framework is presented to perform sparse coding for different local structures of human face,and the weighted regular term is introduced in the sparse representation process to enhance the identification of information hidden in the coding coefficients.Finally,by synthesising the sparse representation results of all visual salient block dictionaries,the global coding residual is obtained and the class label is given.The experimental results on four databases,that is,AR,extended Yale B,LFW and PubFig,indicate that the combination of visual saliency dictionary,block cooperative sparse representation and weighted constraint coding can effectively enhance the accuracy of sparse representation of the samples to be tested and improve the performance of unconstrained face recognition.
基金supported by Natural Science Foundation of China(61425008,61333004,61273054)
文摘Visual attention is a mechanism that enables the visual system to detect potentially important objects in complex environment. Most computational visual attention models are designed with inspirations from mammalian visual systems.However, electrophysiological and behavioral evidences indicate that avian species are animals with high visual capability that can process complex information accurately in real time. Therefore,the visual system of the avian species, especially the nuclei related to the visual attention mechanism, are investigated in this paper. Afterwards, a hierarchical visual attention model is proposed for saliency detection. The optic tectum neuron responses are computed and the self-information is used to compute primary saliency maps in the first hierarchy. The "winner-takeall" network in the tecto-isthmal projection is simulated and final saliency maps are estimated with the regularized random walks ranking in the second hierarchy. Comparison results verify that the proposed model, which can define the focus of attention accurately, outperforms several state-of-the-art models.This study provides insights into the relationship between the visual attention mechanism and the avian visual pathways. The computational visual attention model may reveal the underlying neural mechanism of the nuclei for biological visual attention.
基金supported by the National Natural Science Foundation of China(61210012)
文摘Craters are salient terrain features on planetary surfaces, and provide useful information about the relative dating of geological unit of planets. In addition, they are ideal landmarks for spacecraft navigation. Due to low contrast and uneven illumination, automatic extraction of craters remains a challenging task. This paper presents a saliency detection method for crater edges and a feature matching algorithm based on edges informa- tion. The craters are extracted through saliency edges detection, edge extraction and selection, feature matching of the same crater edges and robust ellipse fitting. In the edges matching algorithm, a crater feature model is proposed by analyzing the relationship between highlight region edges and shadow region ones. Then, crater edges are paired through the effective matching algorithm. Experiments of real planetary images show that the proposed approach is robust to different lights and topographies, and the detection rate is larger than 90%.
基金supported by NSFC Joint Fund with Guangdong under Key Project(U1201258)National Natural Science foundation of China(61402261+3 种基金6130308861572286)the scientific research foundation of Shandong Province of Outstanding Young Scientist Award(BS2013DX048)Shandong Ji’nan Science and Technology Development Project(201202015)
文摘Reliable saliency detection can be used to quickly and effectively locate objects in images. In this paper, a novel algorithm for saliency detection based on superpixels clustering and stereo disparity (SDC) is proposed. Firstly, we use an improved superpixels clustering method to decompose the given image. Then, the disparity of each superpixel is computed by a modified stereo correspondence algorithm. Finally, a new measure which combines stereo disparity with color contrast and spatial coherence is defined to evaluate the saliency of each superpixel. From the experiments we can see that regions with high disparity can get higher saliency value, and the saliency maps have the same resolution with the source images, objects in the map have clear boundaries. Due to the use of superpixel and stereo disparity information, the proposed method is computationally efficient and outperforms some state-of-the-art color- based saliency detection methods.
基金The National Natural Science Foundation of China(No.61762004,61762005)the National Key Research and Development Program(No.2018YFB1702700)+1 种基金the Science and Technology Project Founded by the Education Department of Jiangxi Province,China(No.GJJ200702,GJJ200746)the Open Fund Project of Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology(No.JETRCNGDSS201901,JELRGBDT202001,JELRGBDT202003).
文摘To evaluate the quality of blurred images effectively,this study proposes a no-reference blur assessment method based on gradient distortion measurement and salient region maps.First,a Gaussian low-pass filter is used to construct a reference image by blurring a given image.Gradient similarity is included to obtain the gradient distortion measurement map,which can finely reflect the smallest possible changes in textures and details.Second,a saliency model is utilized to calculate image saliency.Specifically,an adaptive method is used to calculate the specific salient threshold of the blurred image,and the blurred image is binarized to yield the salient region map.Block-wise visual saliency serves as the weight to obtain the final image quality.Experimental results based on the image and video engineering database,categorial image quality database,and camera image database demonstrate that the proposed method correlates well with human judgment.Its computational complexity is also relatively low.
基金Projects(60234030 ,60404021) supported by the National Natural Science Foundation of China
文摘Based on salient visual regions for mobile robot navigation in unknown environments, a new place recognition system was presented. The system uses monocular camera to acquire omni-directional images of the environment where the robot locates. Salient local regions are detected from these images using center-surround difference method, which computes opponencies of color and texture among multi-scale image spaces. And then they are organized using hidden Markov model (HMM) to form the vertex of topological map. So localization, that is place recognition in our system, can be converted to evaluation of HMM. Experimental results show that the saliency detection is immune to the changes of scale, 2D rotation and viewpoint etc. The created topological map has smaller size and a higher ratio of recognition is obtained.
基金financially supported by National Natural Science Foundation of China(No.61871176)Key Scientific and Technological Project of Science and Technology Department of Henan Province(No.172102210030,182102110099)+2 种基金Key Scientific Research Project Program of Universities of Henan Province(No.18B520025)Open Fund of Key Laboratory of Grain Information Processing and Control(No.KFJJ-2018-102)supported by Collaborative Innovation Center of Grain Storage and Security of Henan Province
文摘Pests detecting is an important research subject in grain storage field.In the past decades,many edge detection methods have been applied to the edge detection of stored grain pests.Although some of them can realize the stored grain pests detecting,precision and robustness are not good enough.Spectral residual(SR)saliency edge detection defines the logarithmic spectrumof image as novelty part of the image information.The remaining spectrumis converted to the airspace to obtain edge detection results.SR algorithm is completely based on frequency domain processing.It not only can effectively simplify the target detection algorithm,but also can improve the effectiveness of target recognition.The experimental results show that the edge results of stored grain pests detected by SR method are effective and stable.
基金Supported by National Natural Science Foundation of China(Grant Nos.U1564201,61573171,61403172,51305167)China Postdoctoral Science Foundation(Grant Nos.2015T80511,2014M561592)+3 种基金Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20140555)Six Talent Peaks Project of Jiangsu Province,China(Grant Nos.2015-JXQC-012,2014-DZXX-040)Jiangsu Postdoctoral Science Foundation,China(Grant No.1402097C)Jiangsu University Scientific Research Foundation for Senior Professionals,China(Grant No.14JDG028)
文摘Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high processing times and low vehicle detection performance.To address this issue,a visual saliency and deep sparse convolution hierarchical model based vehicle detection algorithm is proposed.A visual saliency calculation is firstly used to generate a small vehicle candidate area.The vehicle candidate sub images are then loaded into a sparse deep convolution hierarchical model with an SVM-based classifier to perform the final detection.The experimental results demonstrate that the proposed method is with 94.81% correct rate and 0.78% false detection rate on the existing datasets and the real road pictures captured by our group,which outperforms the existing state-of-the-art algorithms.More importantly,high discriminative multi-scale features are generated by deep sparse convolution network which has broad application prospects in target recognition in the field of intelligent vehicle.
文摘A new method for automatic salient object segmentation is presented.Salient object segmentation is an important research area in the field of object recognition,image retrieval,image editing,scene reconstruction,and 2D/3D conversion.In this work,salient object segmentation is performed using saliency map and color segmentation.Edge,color and intensity feature are extracted from mean shift segmentation(MSS)image,and saliency map is created using these features.First average saliency per segment image is calculated using the color information from MSS image and generated saliency map.Then,second average saliency per segment image is calculated by applying same procedure for the first image to the thresholding,labeling,and hole-filling applied image.Thresholding,labeling and hole-filling are applied to the mean image of the generated two images to get the final salient object segmentation.The effectiveness of proposed method is proved by showing 80%,89%and 80%of precision,recall and F-measure values from the generated salient object segmentation image and ground truth image.
基金supported by the National Natural Science Foundation of China(61233010 61305106)+2 种基金the Shanghai Natural Science Foundation(17ZR1409700 18ZR1415300)the basic research project of Shanghai Municipal Science and Technology Commission(16JC1400900)
文摘This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regions, allowing more processing is reserved only for these regions. The speed of object segmentation is significantly improved by the region proposal method.By the combination of the region proposal method based on the convolutional neural network and superpixel method, the category and location information can be used to segment objects and image redundancy is significantly reduced. The processing time is reduced considerably by this to achieve the real time. Experiments show that the proposed method can segment the interested target object in real time on an ordinary laptop.
基金supported by National Natural Science Foundation of China under Grant No.610700800973 Sub-Program Projects under Grant No.2009CB320906+3 种基金National Science and Technology of Major Special Projects under Grant No.2010ZX03004-003S&T Planning Project of Hubei Provincial Department of Education under Grant No. Q20112805H&SPlanning Project of Hubei Provincial Department of Education under Grant No.2011jyte142Science Foundation of HubeiProvincial under Grant No.2010CDB05103
文摘In order to further improve the efficiency of video compression, we introduce a perceptual characteristics of Human Visual System (HVS) to video coding, and propose a novel video coding rate control algorithm based on human visual saliency model in H.264/AVC. Firstly, we modifie Itti's saliency model. Secondly, target bits of each frame are allocated through the correlation of saliency region between the current and previous frame, and the complexity of each MB is modified through the saliency value and its Mean Absolute Difference (MAD) value. Lastly, the algorithm was implemented in JVT JM12.2. Simulation results show that, comparing with traditional rate control algorithm, the proposed one can reduce the coding bit rate and improve the reconstructed video subjective quality, especially for visual saliency region. It is very suitable for wireless video transmission.
基金supported by the National Natural Science Foundation of China(61303192)the China Postdoctoral Science Foundation(2015M5726942016T90979)
文摘In order to better represent infrared target features under different environments, a saliency detection method based on region covariance and global feature is proposed. Firstly, the region covariance features on different scale spaces and different image regions are extracted and transformed into sigma features,then combined with central position feature, the local salient map is generated. Next, a global salient map is generated by gray contrast and density estimation. Finally, the saliency detection result of infrared images is obtained by fusing the local and global salient maps. The experimental results show that the salient map of the proposed method has complete target features and obvious edges,and the proposed method is better than the state of art method both qualitatively and quantitatively.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research Group No.(RG-1438-034)and co-authors K.A.and M.A.
文摘Melanoma,due to its higher mortality rate,is considered as one of the most pernicious types of skin cancers,mostly affecting the white populations.It has been reported a number of times and is now widely accepted,that early detection of melanoma increases the chances of the subject’s survival.Computer-aided diagnostic systems help the experts in diagnosing the skin lesion at earlier stages using machine learning techniques.In thiswork,we propose a framework that accurately segments,and later classifies,the lesion using improved image segmentation and fusion methods.The proposed technique takes an image and passes it through two methods simultaneously;one is the weighted visual saliency-based method,and the second is improved HDCT based saliency estimation.The resultant image maps are later fused using the proposed image fusion technique to generate a localized lesion region.The resultant binary image is later mapped back to the RGB image and fed into the Inception-ResNet-V2 pre-trained model-trained by applying transfer learning.The simulation results show improved performance compared to several existing methods.
基金Supported by China Scholarship Council(201206230015)China NSFC Key Project(61133009)the National 973 Program of China(2011CB302203)
文摘This work presents a robust and rotationally invariant shape descriptor, namely perception pronouncement (called p2), to mathematically model the eye fixations, p2 takes two criteria - the local consideration of surface curvature and the global consideration of view- independent visibility - into account. Differing from existing works that often computed the intrinsic surface property of visibility in imaging space, a novel approach is proposed to approxi- mate the attribute in object space using Gauss map and Ray tracing. With the presented shape descriptor, mesh saliency detection, which refers to reasoning about which regions or points of a surface axe important, is more sensible, especially when 3D models fall into two categories: (1) the models possess significant interior/exterior structures; (2) the models contain regions where the contrast in visibility is high. For the models that are out of the categories, saliencies achieved by our approach are comparable to or even better than those of state-of-the-axt methods.
基金supported by“MOST”under Grants No.105-2628-E-224-001-MY3 and No.103-2221-E-224-034-MY2
文摘Straightforward image resizing operators without considering image contents (e.g., uniform scaling) cannot usually produce satisfactory results, while content-aware image retargeting aims to arbitrarily change image size while preserving visually prominent features. In this paper, a cluster-based saliency-guided seam carving algorithm for content- aware image retargeting is proposed. To cope with the main drawback of the original seam carving algorithm relying on only gradient-based image importance map, we integrate a gradient-based map and a cluster-based saliency map to generate a more reliable importance map, resulting in better single image retargeting results. Experimental results have demonstrated the efficacy of the proposed algorithm.
文摘Saliency detection models, which are used to extract salient regions in visual scenes, are widely used in various multimedia processing applications. It has attracted much attention in the area of computer vision over the past decades. Since most images or videos over the Internet are stored in compressed domains such as images in JPEG format and videos in MPEG2 format, H.264 format, and MPEG4 Visual format, many saliency detection models have been proposed in the compressed domain recently. We provide a review of our works on saliency detection models in the compressed domain in this paper.Besides, we introduce some commonly used fusion strategies to combine spatial saliency map and temporal saliency map to compute the final video saliency map.
文摘Flower Image Classification is a Fine-Grained Classification problem.The main difficulty of Fine-Grained Classification is the large inter-class similarity and the inner-class difference.In this paper,we propose a new algorithm based on Saliency Map and PCANet to overcome the difficulty.This algorithm mainly consists of two parts:flower region selection,flower feature learning.In first part,we combine saliency map with gray-scale map to select flower region.In second part,we use the flower region as input to train the PCANet which is a simple deep learning network for learning flower feature automatically,then a 102-way softmax layer that follow the PCANet achieve classification.Our approach achieves 84.12%accuracy on Oxford 17 Flowers dataset.The results show that a combination of Saliency Map and simple deep learning network PCANet can applies to flower image classification problem.
文摘Salient detection approaches mainly use single local cues or global cues as its inputs features to detect salient objects,which are sensitive to complex background,so the effect of detection were not satisfactory.In this paper,we investigate the traits of saliency detection and observed the two following facts:Firstly,high-level saliency cues achieve better saliency detection results than low-level saliency cues.Secondly,multi-difference cues achieve better saliency detection results than single difference cues.Based on deeply analysis,we proposed an image saliency detection algorithm through high level multi-difference cues(HMDS).By using multi-difference,not only HMDS could remove the non-salient region effectively,but also it could enhance the pixel value of salient region at the same time.In order to evaluate the performance of HMDS,the proposed method is compared with seven state-of-the-art algorithms on five popular datasets.The final experimental results show that the proposed method performs effectiveness,and will have a perfect application prospect.
基金the National Natural Science Foundation (61472196, 61672305)Natural Science Foundation of Shandong Province (BS2015DX010, ZR2015FM012)Key Research and Development Foundation of Shandong Province (2017GGX10133).
文摘To address the problem of using fixed feature and single apparent model which is difficult to adapt to the complex scenarios, a Kernelized correlation filter target tracking algorithm based on online saliency feature selection and fusion is proposed. It combined the correlation filter tracking framework and the salient feature model of the target. In the tracking process, the maximum Kernel correlation filter response values of different feature models were calculated respectively, and the response weights were dynamically set according to the saliency of different features. According to the filter response value, the final target position was obtained, which improves the target positioning accuracy. The target model was dynamically updated in an online manner based on the feature saliency measurement results. The experimental results show that the proposed method can effectively utilize the distinctive feature fusion to improve the tracking effect in complex environments.