Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinit...Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield.展开更多
Coastal and estuarine protists are frequently exposed to salinity undulation.While the tolerance and stress responses of microalgae to salinity have been extensively studied,there have been scarce studies on the physi...Coastal and estuarine protists are frequently exposed to salinity undulation.While the tolerance and stress responses of microalgae to salinity have been extensively studied,there have been scarce studies on the physiological response of heterotrophic protists to salinity stressing.In this study,we investigated the physiological response of the heterotrophic ciliate Gastrostyla setifera to a salinity of 3,via a transcriptomic approach.The first transcriptome of genus Gastrostyla was obtained utilizing a group of manually isolated ciliate individuals(cells)and RNA-seq technique.The completeness of the transcriptome was verified.Differentially expressed gene(DEG)analysis was performed among the transcriptomes of G.setifera acclimated in saline water(salinity 3)and those cultured in fresh water.The results demonstrated a significant alternation in gene transcription,in which the ciliate exhibits a transcripttomic acclimation in responding salinity stressing.The up-regulated DEGs were enriched in the pathways of cytoskeleton proteins,membrane trafficking,protein kinases and protein phosphatases.These may represent enhanced functions of ion transport,stress response and cell protections.Pathways involved in energy metabolism and biosynthesis were markedly down-regulated,reflecting decreased cell activity.Particularly,we detected significantly down-regulated genes involved in several pathways of amino acid catabolism,which may lead to accumulation of amino acids in the ciliate cell.Amino acid could act as compatible solutes in the cytoplasm to maintain the osmotic balance in saline water.Overall,this work is an initial exploration to the molecular basis of the heterotrophic protist responding to salinity stressing.The result sheds light on the mechanisms of enhancement of cell protection,reduction of cell activity,and osmotic pressure regulation in ciliates acclimated to salinity.展开更多
Salinity is among the most critical factors limiting the growth and species distribution of coastal plants.Water salinity in estuarine ecosystems varies temporally and spatially,but the variation patterns across diffe...Salinity is among the most critical factors limiting the growth and species distribution of coastal plants.Water salinity in estuarine ecosystems varies temporally and spatially,but the variation patterns across different time scales and salinity fluctuation have rarely been quantified.The effects of salinity on floristic diversity in mangroves are not fully understood due to the temporal and spatial heterogeneity of salinity.In this study,we monitored water salinity at an interval of 10-min over one year in three mangrove catchment areas representing the outer part,middle part,and inner part respectively of Dongzhai Bay,Hainan,China.The number of mangrove community types and dominant mangrove species of the three catchment areas were also investigated.We found that the diurnal variation and dry-season intra-month variation in water salinity were driven by tidal cycles.The seasonal variation in water salinity was mainly driven by rainfall with higher salinity occurring in the dry season and lower salinity occurring in the wet season.Spatially,water salinity was highest at the outer part,intermediate at the middle part,and lowest at the inner part of the bay.The intra-month and annual fluctuations of water salinity were highest at the middle part and lowest at the outer part of the bay.The number of mangrove community types and dominant species were lowest at the outer part,intermediate at the middle part,and highest at the inner part of the bay.These results suggest that the temporal variation of water salinity in mangroves is driven by different factors at different time scales and therefore it is necessary to measure water salinity at different time scales to get a complete picture of the saline environment that mangroves experience.Spatially,lower salinity levels benefit mangrove species richness within a bay landscape,however,further research is needed to distinguish the effects of salinity fluctuation and salinity level in affecting mangrove species richness.展开更多
Rising atmospheric CO_(2)(carbon dioxide)concentrations and salinization are manifestations of climate change that affect plant growth and productivity.Species with an intermediate C_(3)-C_(4)type of photosynthesis li...Rising atmospheric CO_(2)(carbon dioxide)concentrations and salinization are manifestations of climate change that affect plant growth and productivity.Species with an intermediate C_(3)-C_(4)type of photosynthesis live in a wide range of precipitation,temperature,and soil quality,but are more often found in warm and dry habitats.One of the intermediate C_(3)-C_(4)photosynthetic type is C_(2)photosynthesis with a carbon concentration mechanism(CCM)that reassimilates CO_(2)released via photorespiration.However,the ecological significance under which C_(2)photosynthesis has advantages over C_(3)and C_(4)plants remains largely unexplored.Salt tolerance and functioning of CCM were studied in plants from two populations(P1 and P2)of Sedobassia sedoides(Pall.)Freitag&G.Kadereit Asch.species with C_(2)photosynthesis exposed to 4 d and 10 d salinity(200 mM NaCl)at ambient(785.7 mg/m^(3),aCO_(2)and elevated(1571.4 mg/m^(3),eCO_(2))CO_(2).On the fourth day of salinity,an increase in Na+content,activity catalase,and superoxide dismutase was observed in both populations.P2 plants showed an increase in proline content and a decrease in photosynthetic enzyme content:rubisco,phosphoenolpyruvate carboxylase(PEPC),and glycine decarboxylase(GDC),which indicated a weakening of C_(2)and C_(4)characteristics under salinity.Treatment under 10 d salinity led to an increased Na^(+)content and activity of cyclic electron flow around photosystem I(PSI CEF),a decreased content of K^(+)and GDC in both populations.P1 plants showed greater salt tolerance,which was assessed by the degree of reduction in photosynthetic enzyme content,PSI CEF activity,and changes in relative growth rate(RGR).Differences between populations were evident under the combination of eCO_(2)and salinity.Under long-term salinity and eCO_(2),more salt-tolerant P1 plants had a higher dry biomass(DW),which was positively correlated with PSI CEF activity.In less salt-tolerant P2 plants,DW correlated with transpiration and dark respiration.Thus,S.sedoides showed a high degree of photosynthetic plasticity under the influence of salinity and eCO_(2)through strengthening(P1 plants)and weakening C_(4)characteristics(P2 plants).展开更多
The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region conta...The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region containing 327 bp,and an open reading frame of 2298 bp.ChCLC 7 has 96.8%and 92.1%homology with CLC 7 of Crassostrea gigas and Crassostrea virginica,respectively,and it was clustered with CLC 7 of C.gigas and C.virginica.QRT-PCR showed that ChCLC 7 was expressed in all eight tissues,with the highest in adductor muscle and second in gill.The ChCLC 7 expression pattern in gill was altered significantly under high salinity stress with an overall upward and then downward trend.After RNA interference,the expression of ChCLC 7 and survival rate of oyster under high salinity stress was reduced significantly,and so did the concentration of hemolymph chloride ion in 48-96 h after RNA interference.We believed that ChCLC 7 could play an important role in osmoregulation of C.hongkongensis by regulating Cl^(-)transport.This study provided data for the analysis of molecular mechanism against oyster salinity stress.展开更多
Ocean fronts play important roles in nutrient transport and in the shaping ecological patterns.Frontal zones in small bays are typically small in scale,have a complex structure,and they are spatially and temporally va...Ocean fronts play important roles in nutrient transport and in the shaping ecological patterns.Frontal zones in small bays are typically small in scale,have a complex structure,and they are spatially and temporally variable,but there are limited data on how biological communities respond to this variation.Hangzhou Bay,a mediumsized estuary in China,is an ideal place in which to study the response of plankton to small-scale ocean fronts,because three water masses(Qiantang River Diluted Water,Changjiang River Diluted Water,and the East China Sea current) converge here and form dynamic salinity fronts throughout the year.We investigate zooplankton communities,and temperature,salinity and chlorophyll a(Chl a) in Hangzhou Bay in June(wet perio d) and December(dry period) of 2022 and examine the dominant environmental factors that affect zooplankton community spatial variability.We then match the spatial distributions of zooplankton communities with those of salinity fronts.S alinity is the most important explanatory variable to affect zooplankton community spatial variability during both wet and dry periods,in that it contributes>60% of the variability in community structure.Furthermore,the spatial distributions of zooplankton match well with salinity fronts.During December,with weaker Qiantang River Diluted Water and a stronger secondary Changjiang River Plume,zooplankton communities occur in moderate salinity(MS,salinity range 15.6±2.2) and high salinity(HS,22.4±1.7) regions,and their ecological boundaries closely match the Qiantang River Diluted Water front.In June,different zooplankton communities occur in low salinity(LS,3.9±1.0),MS(11.7±3.6) and HS(21.3±1.9) regions.Although the LS region occurs abnormally in the central bay rather than its apex because of the anomalous influence of rising and falling tides during the sampling perio d,the ecological boundaries still match salinity interfaces.Low-salinity or brackish-water zooplankter taxa are relatively more abundant in LS or MS regions,and the biomass and abundance of zooplankton is higher in the MS region.展开更多
Salinity stress greatly impacts rice grain yield and quality, as well as the 2-acetyl-1-pyrroline(2-AP) content in grains. The present study was conducted with Nanjing 9108(NJ9108, conventional japonica rice) and Wenl...Salinity stress greatly impacts rice grain yield and quality, as well as the 2-acetyl-1-pyrroline(2-AP) content in grains. The present study was conducted with Nanjing 9108(NJ9108, conventional japonica rice) and Wenliangyou 669(WLY669, indica hybrid rice) in the fields with non-salinity(NS), low salinity(LS), and high salinity(HS) stresses in 2021 and 2022.展开更多
Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS...Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.展开更多
A 110-year ensemble simulation of an ocean general circulation model(OGCM)was analyzed to identify the modulation of salinity interdecadal variability on El Niño-Southern Oscillation(ENSO)amplitude in the tropica...A 110-year ensemble simulation of an ocean general circulation model(OGCM)was analyzed to identify the modulation of salinity interdecadal variability on El Niño-Southern Oscillation(ENSO)amplitude in the tropical Pacific during 1901-2010.The simulating results show that sea surface salinity(SSS)variation in the region exhibits notable and coherent interdecadal variability signal,which is closely associated with the Interdecadal Pacific Oscillation(IPO).As salinity increases or reduces,the SSS modulations on ENSO amplitude during its warm/cold events vary asymmetrically with positive/negative IPO phases.Physically,salinity interdecadal variability can enhance or reduce ENSO-related conditions in upper-ocean stratification,contributing noticeably to ENSO variability.Salinity anomalies associated with the mixed layer depth and barrier layer thickness can modulate ENSO amplitude during positive and negative IPO phases,resulting in the asymmetry of sea surface temperature(SST)anomaly in the tropical Pacific.During positive IPO phases,SSS interdecadal variability contributes positively to El Niño amplitude but negatively to La Niña amplitude by enhancing or reducing SSS interannual variability,and vice versa during negative IPO phases.Quantitatively,the results indicate that the modulation of the ENSO amplitude by the SSS interdecadal variability is 15%-28%during negative IPO phases and 30%-20%during positive IPO phases,respectively.Evidently,the SSS interdecadal variability associated with IPO and its modulation on ENSO amplitude in the tropical Pacific are among factors essentially contributing ENSO diversity.展开更多
The spaceborne platform has unprecedently provided the global eddy-permitting(typically about 0.25°)products of sea surface salinity(SSS),however the existing SSS products can hardly resolve mesoscale motions due...The spaceborne platform has unprecedently provided the global eddy-permitting(typically about 0.25°)products of sea surface salinity(SSS),however the existing SSS products can hardly resolve mesoscale motions due to the heavy noises therein and the over-smoothing in denoising processes.By means of the multi-fractal fusion(MFF),the high-resolution SSS product is synthesized with the template of sea surface temperature(SST).Two low-resolution SSS products and four SST products are considered as the source data and the templates respectively to determine the best combination.The fused products are validated by the in situ observations and intercompared via SSS maps,Singularity Exponent maps and wavenumber spectra.The results demonstrate that the MFF can perform a good work in mitigating the noises and improving the resolution.The combination of the climate change initiative SSS and the remote sensing system SST can produce the 0.1°denoised product whose global mean standard derivation of salinity against Argo is 0.21 and the feature resolution can reach 30−40 km.展开更多
A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial aco...A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial acoustic modes in 1060-XP SMF show different sensitivities to temperature and salinity.Based on the new phenomenon that different radial acoustic modes have different frequency shift-temperature and frequency shift-salinity coefficients,we propose a novel method for simultaneously measuring temperature and salinity by measuring the frequency shift changes of two FBS scattering peaks.In a proof-of-concept experiment,the temperature and salinity measurement errors are 0.12℃and 0.29%,respectively.The proposed method for simultaneously measuring temperature and salinity has the potential applications such as ocean surveying,food manufacturing and pharmaceutical engineering.展开更多
Soil salinity is a major limiting factor for crop production in coastal areas of Bangladesh. Cheap and sustainable management of soil salinity is hence most sought out topics in agricultural research. Conceptualizing ...Soil salinity is a major limiting factor for crop production in coastal areas of Bangladesh. Cheap and sustainable management of soil salinity is hence most sought out topics in agricultural research. Conceptualizing that idea in mind, a pot experiment was conducted in the Department of Soil, Water & Environment, University of Dhaka in order to analyze if common organic amendments (rice straw, saw dust) coupled with reduce photoperiod can mitigate salinity effect on the growth of bean (Phaseolus vulgaris). The experiment was set up following completely randomized design (CRD) with nine treatments and three replications containing Tc (Control), T1 (Ambient photoperiod + 110 mM Salinity treatment + Rice straw), T2 (Reduced photoperiod + 110 mM Salinity treatment + Rice straw), T3 (Ambient photoperiod + 220 mM Salinity treatment + Rice straw), T4 (Reduced photoperiod + 220 mM Salinity treatment + Rice straw), T5 (Ambient photoperiod + 110 mM Salinity treatment + Saw dust), T6 (Reduced photoperiod + 110 mM Salinity treatment + Saw dust), T7 (Ambient photoperiod + 220 mM Salinity treatment + Saw dust) and T8 (Reduced photoperiod + 220 mM Salinity treatment + Saw dust). Organic amendments were used separately at the rate of 12 ton/ha. The highest plant height (98.67 cm), root length (12.5 cm), pod number (10.33), leaf area (13.99 cm2), fresh weight (680 kg/ha), dry weight (316.67 kg/ha) were recorded with the treatment T1 while the second-best treatment was treatment T2 (with highest harvest index 0.040) and these results were statistically significant (p < 0.001). In post-harvest soil, pH, EC, OC, OM;available N, P, K, S;total Ca, Mg, Zn, Mn were increased significantly in treatment T1. The overall results illustrated that the best growth and yield performances were achieved in the treatment T1 and T2.展开更多
Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production w...Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production well, the produced fluids commonly contain water. The understanding of this water’s constituents and volumes is vital for the sustainable continuity of production operations, as PW has a number of negative impacts on the infrastructure integrity of the operation. On the other hand, PW can be an alternative source of irrigation water as well as of industrial salt. Interestingly, both the quantity as well as the quality of PW do not remain constant but can vary, both progressively and erratically, even over short periods of time. This paper discusses such a situation of variable PW in an oil and gas operation in the State of Kuwait.展开更多
For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This stu...For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This study examines the Atterberg limits,shear strength,and compressibility of carbonate saline soil samples with different NaHCO3 contents in Northeast China.The mechanism underlying the influence of salt content on soil macroscopic properties was investigated based on a volumetric flask test,a mercury intrusion porosimetry(MIP)test,and a scanning electron microscopic(SEM)test.The results demonstrated that when NaHCO3 contents were lower than the threshold value of 1.5%,the bound water film adsorbed on the surface of clay particles thickened continuously,and correspondingly,the Atterberg limits and plasticity index increased rapidly as the increase of sodium ion content.Meanwhile,the bonding force between particles was weakened,the dispersion of large aggregates was enhanced,and the soil structure became looser.Macroscopically,the compressibility increased and the shear strength(mainly cohesion)decreased by 28.64%.However,when the NaHCO3 content exceeded the threshold value of 1.5%,the salt gradually approached solubility and filled the pores between particles in the form of crystals,resulting in a decrease in soil porosity.The cementation effect generated by salt crystals increased the bonding force between soil particles,leading to a decrease in plasticity index and an improvement in soil mechanical properties.Moreover,this work provides valuable suggestions and theoretical guidance for the scientific utilization of carbonate saline soil in backfill engineering projects.展开更多
Basic helix–loop–helix(bHLH)proteins play pivotal roles in plant growth,development,and stress responses.However,the molecular and functional properties of bHLHs have not been fully characterized.In this study,a nov...Basic helix–loop–helix(bHLH)proteins play pivotal roles in plant growth,development,and stress responses.However,the molecular and functional properties of bHLHs have not been fully characterized.In this study,a novel XI subgroup of the bHLH protein gene RcbHLH59 was isolated and identified in rose(Rosa sp.).This gene was induced by salinity stress in both rose leaves and roots,and functioned as a transactivator.Accordingly,silencing RcbHLH59 affected the antioxidant system,^(Na+/K+)balance,and photosynthetic system,thereby reducing salt tolerance,while the transient overexpression of RcbHLH59 improved salinity stress tolerance.Additionally,RcbLHLH59 was found to regulate the expression of sets of pathogenesis-related(PR)genes in RcbHLH59-silenced(TRV-RcbHLH59)and RcbHLH59-overexpressing(RcbHLH59-OE)rose plants.The RcPR4/1 and RcPR5/1 transcript levels showed opposite changes in the TRVRcbHLH59 and RcbHLH59-OE lines,suggesting that these two genes are regulated by RcbHLH59.Further analysis revealed that RcbHLH59 binds to the promoters of RcPR4/1 and RcPR5/1,and that the silencing of RcPR4/1 or RcPR5/1 led to decreased tolerance to salinity stress.Moreover,callose degradation-and deposition-related genes were impaired in RcPR4/1-or RcPR5/1-silenced plants,which displayed a salt tolerance phenotype by balancing the ^(Na+/K+)ratio through callose deposition.Collectively,our data highlight a new RcbLHLH59-RcPRs module that positively regulates salinity stress tolerance by balancing Na^(+)/K^(+)and through callose deposition in rose plants.展开更多
Carex species are widely used in many parts of the world and contain a large number of ecologically diverse species.Among the Carex species,some of them are known to be glycophytes,while others are halophytes.Carex mo...Carex species are widely used in many parts of the world and contain a large number of ecologically diverse species.Among the Carex species,some of them are known to be glycophytes,while others are halophytes.Carex morrowii Boott(Cyperaceae)is resistant to trample through their root structure and has an essential ornamental value in the landscape with their leaves.However,no information was found about the level of salinity tolerance/sensitivity of the Carex morrowii among these species.In the present study,changes in trace element contents(Na,K,Ca,Cu,Mn,Mg,Ni,Fe,P,Zn,and N)and their transport from roots to leaves,osmotic regulation,alterations in chlorophyll and carotenoid contents,nitrogen assimilation(nitrate reductase activity;NRA)and total soluble protein content in both roots and leaves of Carex morrowii under different salinity concentrations(50 mM,100 mM,200 mM and 300 mM NaCl)were examined in detail.Our study provides the first detailed data concerning the responses of leaves and roots and the determination of the level of salinity tolerance/sensitivity of the Carex morrowii.The K+/Na+ratio was preserved up to 200 mM NaCl,and accordingly,the element uptake and transport ratios showed that they could control moderate NaCl levels.Ca homeostasis that is maintained even in 200 mM NaCl concentration can be effective in maintaining the structural integrity and selective permeability of the cell membranes,while 300 mM NaCl concentration caused decreased photosynthetic pigments,and deterioration in element content and compartmentation.Moreover,these data suggest that plant parts of Carex morrowii respond differently against varied levels of salinity stress.Although the decrease in NR activity at 200 mM and 300 mM NaCl concentrations in the leaves,NR activity was maintained in the roots.Consequently,Carex morrowii is moderately tolerant to salinity and the carotenoid content and osmotic regulation of Carex morrowii appears to be instrumental in its survival at different salinity levels.Especially the roots of Carex morrowii have a remarkable role in salinity tolerance.展开更多
It has been recognized that salinity variability in the tropical Pacific is closely related to the Interdecadal Pacific Oscillation(IPO).Here,we use model simulations from 1900 to 2017 to illustrate obvious asymmetrie...It has been recognized that salinity variability in the tropical Pacific is closely related to the Interdecadal Pacific Oscillation(IPO).Here,we use model simulations from 1900 to 2017 to illustrate obvious asymmetries of salinity variability in the tropical Pacific during positive and negative IPO phases.The amplitude of salinity variability in the tropical Pacific during positive IPO phases is larger than that during negative IPO phases,with a more westward shift of a large Sea Surface Salinity(SSS)anomaly along the equator.Salinity budget analyses show that the asymmetry of salinity variability during positive and negative IPO phases is dominated by the difference in the surface forcing associated with the freshwater flux[FWF,precipitation(P)minus evaporation(E)],with a contribution of 40%–50%near the dateline on the equator.Moreover,the relationships between the salinity variability and its budget terms also show differences in their leadlag correlations during positive and negative IPO phases.These differences in salinity variability during different IPO phases produce asymmetric effects on seawater density which can reduce or enhance upper-ocean stratification.Therefore,the salinity effects may modulate the intensity of El Nino-Southern Oscillation(ENSO),resulting in an enhanced(reduced)El Nino but a reduced(enhanced)La Ni?a during positive(negative)IPO phases by 1.6℃psu^(-1)(1.3℃psu^(-1)),respectively.It is suggested that the asymmetry of salinity variability may be related to the recent change in ENSO amplitude associated with the IPO,which can help elucidate ENSO diversity.展开更多
Ocean salinity is an important variable that affects the ocean stratification.We compared the salinity and ocean stratification in the tropical Pacific derived from the Argo(Array for Real-time Geostrophic Oceanograph...Ocean salinity is an important variable that affects the ocean stratification.We compared the salinity and ocean stratification in the tropical Pacific derived from the Argo(Array for Real-time Geostrophic Oceanography data),EN4(Ensemble 4 analysis),SODA(the Simple Ocean Data Assimilation reanalysis),IAP(Institute of Atmospheric Physics data),and ORAS4(Ocean Reanalysis System 4)over 2005–2017.Results show that the spatial distribution of climatological mean of sea surface salinity(SSS)in all the products is consistent,and the low salinity region showed large deviation and strong dispersion.The Argo has the smallest RMSE and the highest correlation with the ensemble mean,while the IAP shows a high-salinity deviations relative to other datasets.All the products show high positive correlations between the sea surface density(SSD)and SSS with respect to the deviations of climatological mean from ensemble mean,suggesting that the SSD deviation may be mainly influenced by the SSS deviation.In the aspect of the ocean stratification,the mixed layer depth(MLD)climatological mean in the Argo shows the highest correlation with the ensemble mean,followed by EN4,IAP,ORAS4,and SODA.The Argo and EN4 show thicker barrier layer(BL)relative to the ensemble mean while the SODA displays the largest negative deviation in the tropical western Pacific.Furthermore,the EN4,ORAS4,and IAP underestimate the stability in the upper ocean at the depths of 20–140 m,while Argo overestimates ocean stability.The salinity fronts in the western-central equatorial Pacific from Argo,EN4,and ORAS4 are consistent,while those from SODA and IAP show large deviations with a westward position in amplitude of 0°–6°and 0°–10°,respectively.The SSS trend patterns from all the products are consistent in having ensemble mean with high spatial correlations of 0.95–0.97.展开更多
Cladocera are filter feeders abundant in freshwaters,which consume phytoplankton particles in wide size and taxonomic ranges.The ability of cladocerans to control phytoplankton abundance by grazing is determined by va...Cladocera are filter feeders abundant in freshwaters,which consume phytoplankton particles in wide size and taxonomic ranges.The ability of cladocerans to control phytoplankton abundance by grazing is determined by various factors including the characteristics of phytoplankton.Freshwater salinization may reduce the strength of top-down grazing control of phytoplankton because of the detrimental effects of salinity on the grazing intensity of zooplankters.We performed grazing experiments with two species of Cladocera of different body lengths to test their ability to graze on phytoplankton in natural waters differing in salinity and size and taxonomic composition of food particles.Grazing experiments demonstrated that the grazing rate was mostly controlled by the abundance of phytoplankton in the medium.The grazing rate was reduced at salinity ca.above 3 g/L of NaCl in the medium.The lower grazing rate was observed in the medium with larger phytoplankton particles.Both species predominantly consumed phytoplankton particles with a diameter of 6-12μm,which may shift the size distribution of phytoplankton towards a larger average diameter of particles.The taxon-specific feeding was also observed,as both species predominantly consumed diatom algae.Thus,we found that because of grazing,the size and taxonomic characteristics of phytoplankton are shifted towards a less edible community.The detrimental effect of elevated salinity on grazing rate supports growing concern about freshwater salinization negatively affecting water quality,particularly reducing top-down grazing control of phytoplankton.展开更多
Rice is sensitive to salinity stress at both the seedling and reproductive stages.The present study used 145 rice genotypes comprising of 100 landraces and 45 advanced breeding lines collected from different regions o...Rice is sensitive to salinity stress at both the seedling and reproductive stages.The present study used 145 rice genotypes comprising of 100 landraces and 45 advanced breeding lines collected from different regions of India.These genotypes were evaluated in hydroponics under control[electrical conductivity(ECe)~1.2 dS/m]and saline(ECe~10.0 dS/m)environments along with susceptible(IR29)and tolerant(FL478)checks.The stress susceptibility index for eight morphophysiological traits was estimated.Analysis of variance showed significant differences among the genotypes for all the parameters studied in control,stress and relative stress conditions.We identified 3 landraces(Kuttimanja,Tulasimog and IET-13713I)as tolerant and 14 lines as moderately tolerant to salt stress.Strong correlations in the morphological(root and shoot lengths)and physiological traits(shoot Na^(+),Ca^(2+)and Mg^(2+)contents,and Na^(+)/K^(+)ratio)were observed under all the conditions.The hierarchical cluster analysis grouped the genotypes into five clusters,among which cluster Ⅱ comprised salt-tolerant lines.Haplotyping of Saltol region using 11 simple sequence repeat markers on 17 saline tolerant and moderately tolerant lines was conducted.Markers AP3206F,RM10793 and RM3412b,located close to SKC1 gene(11.23‒12.55 Mb),displayed diverse allelic variations and they were not related to the FL478 type.In this region,tolerant lines like Kuttimanja,IET-13713I and Tulasimog have new alleles.As a result,these lines may be suitable candidates for novel genomic regions governing rice salinity tolerance.Salt-tolerance ability of Kuttimanja,Tulasimog and IET-13713I was validated in two years in three salinity stress environments.These promising lines can be used in breeding programs to broaden the genetic base of salinity tolerance in rice,and it may help to dissect key genomic regions responsible for salinity tolerance.展开更多
基金financed by the National Key Research and Development Program,China(Grant Nos.2022YFE0113400 and 2022YFD1500402)National Natural Science Foundation of China(Grant No.32001466)+3 种基金Scientific and Technological Innovation Fund of Carbon Emissions Peak and Neutrality of Jiangsu Provincial Department of Science and Technology,China(Grant Nos.BE2022304 and BE2022305)Joints Funds of the National Natural Science Foundation of China(Grant No.U20A2022)Postdoctoral Research Foundation of China(Grant No.2020M671628)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield.
基金supported by the National Natural Science Foundation of China(Nos.32370488,42176163,31970398 and 31672251)the Youth Innovation Promotion Association of CAS(Nos.2019216 and 2022211).
文摘Coastal and estuarine protists are frequently exposed to salinity undulation.While the tolerance and stress responses of microalgae to salinity have been extensively studied,there have been scarce studies on the physiological response of heterotrophic protists to salinity stressing.In this study,we investigated the physiological response of the heterotrophic ciliate Gastrostyla setifera to a salinity of 3,via a transcriptomic approach.The first transcriptome of genus Gastrostyla was obtained utilizing a group of manually isolated ciliate individuals(cells)and RNA-seq technique.The completeness of the transcriptome was verified.Differentially expressed gene(DEG)analysis was performed among the transcriptomes of G.setifera acclimated in saline water(salinity 3)and those cultured in fresh water.The results demonstrated a significant alternation in gene transcription,in which the ciliate exhibits a transcripttomic acclimation in responding salinity stressing.The up-regulated DEGs were enriched in the pathways of cytoskeleton proteins,membrane trafficking,protein kinases and protein phosphatases.These may represent enhanced functions of ion transport,stress response and cell protections.Pathways involved in energy metabolism and biosynthesis were markedly down-regulated,reflecting decreased cell activity.Particularly,we detected significantly down-regulated genes involved in several pathways of amino acid catabolism,which may lead to accumulation of amino acids in the ciliate cell.Amino acid could act as compatible solutes in the cytoplasm to maintain the osmotic balance in saline water.Overall,this work is an initial exploration to the molecular basis of the heterotrophic protist responding to salinity stressing.The result sheds light on the mechanisms of enhancement of cell protection,reduction of cell activity,and osmotic pressure regulation in ciliates acclimated to salinity.
基金This study was funded by the Forestry Administration of Guangdong Province(2022KJCX014)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010550)the Department of Science and Technology of Guangdong Province,China(2019B121202003).
文摘Salinity is among the most critical factors limiting the growth and species distribution of coastal plants.Water salinity in estuarine ecosystems varies temporally and spatially,but the variation patterns across different time scales and salinity fluctuation have rarely been quantified.The effects of salinity on floristic diversity in mangroves are not fully understood due to the temporal and spatial heterogeneity of salinity.In this study,we monitored water salinity at an interval of 10-min over one year in three mangrove catchment areas representing the outer part,middle part,and inner part respectively of Dongzhai Bay,Hainan,China.The number of mangrove community types and dominant mangrove species of the three catchment areas were also investigated.We found that the diurnal variation and dry-season intra-month variation in water salinity were driven by tidal cycles.The seasonal variation in water salinity was mainly driven by rainfall with higher salinity occurring in the dry season and lower salinity occurring in the wet season.Spatially,water salinity was highest at the outer part,intermediate at the middle part,and lowest at the inner part of the bay.The intra-month and annual fluctuations of water salinity were highest at the middle part and lowest at the outer part of the bay.The number of mangrove community types and dominant species were lowest at the outer part,intermediate at the middle part,and highest at the inner part of the bay.These results suggest that the temporal variation of water salinity in mangroves is driven by different factors at different time scales and therefore it is necessary to measure water salinity at different time scales to get a complete picture of the saline environment that mangroves experience.Spatially,lower salinity levels benefit mangrove species richness within a bay landscape,however,further research is needed to distinguish the effects of salinity fluctuation and salinity level in affecting mangrove species richness.
基金partially supported by the Science and Technology Research Partnership for Sustainable Development(SATREPS)in collaboration with the Japan Science and Technology Agency(JPMJSA2001)the state assignment of Ministry of Science and Higher Education of the Russian Federation(122042700044-6).
文摘Rising atmospheric CO_(2)(carbon dioxide)concentrations and salinization are manifestations of climate change that affect plant growth and productivity.Species with an intermediate C_(3)-C_(4)type of photosynthesis live in a wide range of precipitation,temperature,and soil quality,but are more often found in warm and dry habitats.One of the intermediate C_(3)-C_(4)photosynthetic type is C_(2)photosynthesis with a carbon concentration mechanism(CCM)that reassimilates CO_(2)released via photorespiration.However,the ecological significance under which C_(2)photosynthesis has advantages over C_(3)and C_(4)plants remains largely unexplored.Salt tolerance and functioning of CCM were studied in plants from two populations(P1 and P2)of Sedobassia sedoides(Pall.)Freitag&G.Kadereit Asch.species with C_(2)photosynthesis exposed to 4 d and 10 d salinity(200 mM NaCl)at ambient(785.7 mg/m^(3),aCO_(2)and elevated(1571.4 mg/m^(3),eCO_(2))CO_(2).On the fourth day of salinity,an increase in Na+content,activity catalase,and superoxide dismutase was observed in both populations.P2 plants showed an increase in proline content and a decrease in photosynthetic enzyme content:rubisco,phosphoenolpyruvate carboxylase(PEPC),and glycine decarboxylase(GDC),which indicated a weakening of C_(2)and C_(4)characteristics under salinity.Treatment under 10 d salinity led to an increased Na^(+)content and activity of cyclic electron flow around photosystem I(PSI CEF),a decreased content of K^(+)and GDC in both populations.P1 plants showed greater salt tolerance,which was assessed by the degree of reduction in photosynthetic enzyme content,PSI CEF activity,and changes in relative growth rate(RGR).Differences between populations were evident under the combination of eCO_(2)and salinity.Under long-term salinity and eCO_(2),more salt-tolerant P1 plants had a higher dry biomass(DW),which was positively correlated with PSI CEF activity.In less salt-tolerant P2 plants,DW correlated with transpiration and dark respiration.Thus,S.sedoides showed a high degree of photosynthetic plasticity under the influence of salinity and eCO_(2)through strengthening(P1 plants)and weakening C_(4)characteristics(P2 plants).
基金Supported by the Natural Science Foundation of Guangxi Province(Nos.2023 GXNSFAA 026503,2018 GXNSFBA281201)the Guangxi Key Research and Development Program(No.GuikeAB21196030)+3 种基金the Marine Science Guangxi First-Class Subject,Beibu Gulf University(No.DRC002)the Scientific Research and Technology Development Plan Project of Qinzhou(Nos.202014842,20223637)the Science and Technology Major Project of Guangxi Province(No.AA17204095-10)the Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation,Beibu Gulf University(Nos.2020ZB09,2020ZB04)。
文摘The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region containing 327 bp,and an open reading frame of 2298 bp.ChCLC 7 has 96.8%and 92.1%homology with CLC 7 of Crassostrea gigas and Crassostrea virginica,respectively,and it was clustered with CLC 7 of C.gigas and C.virginica.QRT-PCR showed that ChCLC 7 was expressed in all eight tissues,with the highest in adductor muscle and second in gill.The ChCLC 7 expression pattern in gill was altered significantly under high salinity stress with an overall upward and then downward trend.After RNA interference,the expression of ChCLC 7 and survival rate of oyster under high salinity stress was reduced significantly,and so did the concentration of hemolymph chloride ion in 48-96 h after RNA interference.We believed that ChCLC 7 could play an important role in osmoregulation of C.hongkongensis by regulating Cl^(-)transport.This study provided data for the analysis of molecular mechanism against oyster salinity stress.
基金The National Key Research and Development Program of China under contact No.2021YFC3101702the Natural Science Foundation of Zhejiang Province under contact Nos LY22D060006 and LY14D060007+1 种基金the Key R&D Program of Zhejiang under contact No.2022C03044the Project of Long-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea (LORCE) under contact No.SZ2001。
文摘Ocean fronts play important roles in nutrient transport and in the shaping ecological patterns.Frontal zones in small bays are typically small in scale,have a complex structure,and they are spatially and temporally variable,but there are limited data on how biological communities respond to this variation.Hangzhou Bay,a mediumsized estuary in China,is an ideal place in which to study the response of plankton to small-scale ocean fronts,because three water masses(Qiantang River Diluted Water,Changjiang River Diluted Water,and the East China Sea current) converge here and form dynamic salinity fronts throughout the year.We investigate zooplankton communities,and temperature,salinity and chlorophyll a(Chl a) in Hangzhou Bay in June(wet perio d) and December(dry period) of 2022 and examine the dominant environmental factors that affect zooplankton community spatial variability.We then match the spatial distributions of zooplankton communities with those of salinity fronts.S alinity is the most important explanatory variable to affect zooplankton community spatial variability during both wet and dry periods,in that it contributes>60% of the variability in community structure.Furthermore,the spatial distributions of zooplankton match well with salinity fronts.During December,with weaker Qiantang River Diluted Water and a stronger secondary Changjiang River Plume,zooplankton communities occur in moderate salinity(MS,salinity range 15.6±2.2) and high salinity(HS,22.4±1.7) regions,and their ecological boundaries closely match the Qiantang River Diluted Water front.In June,different zooplankton communities occur in low salinity(LS,3.9±1.0),MS(11.7±3.6) and HS(21.3±1.9) regions.Although the LS region occurs abnormally in the central bay rather than its apex because of the anomalous influence of rising and falling tides during the sampling perio d,the ecological boundaries still match salinity interfaces.Low-salinity or brackish-water zooplankter taxa are relatively more abundant in LS or MS regions,and the biomass and abundance of zooplankton is higher in the MS region.
基金supported by the National Key Research and Development Program, China (Grant Nos. 2022YFE0113400 and 2022YFD1500402)the Key Research and Development Program of Jiangsu Province, China (Grant No. BE2023355)+4 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 23KJA210004)the Jiangsu Agricultural Science and Technology Innovation Fund, China (Grant No. CX(23)1020)the Scientific and Technological Innovation Fund of Carbon Emissions Peak and Neutrality of Jiangsu Provincial Department of Science and Technology, China (Grant Nos. BE2022304 and BE2022305)the Qinglan Project of Yangzhou Universitythe Priority Academic Program Development of Jiangsu Higher Education Institutions, China。
文摘Salinity stress greatly impacts rice grain yield and quality, as well as the 2-acetyl-1-pyrroline(2-AP) content in grains. The present study was conducted with Nanjing 9108(NJ9108, conventional japonica rice) and Wenliangyou 669(WLY669, indica hybrid rice) in the fields with non-salinity(NS), low salinity(LS), and high salinity(HS) stresses in 2021 and 2022.
基金Supported by the National Key Research and Development Program of China(No.2022YFF0801400)the National Natural Science Foundation of China(No.42176010)the Natural Science Foundation of Shandong Province,China(No.ZR2021MD022)。
文摘Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.
基金Supported by the National Natural Science Foundation of China(No.42030410)the Laoshan Laboratory(No.LSKJ 202202403)supported by the Startup Foundation for Introducing Talent of NUIST。
文摘A 110-year ensemble simulation of an ocean general circulation model(OGCM)was analyzed to identify the modulation of salinity interdecadal variability on El Niño-Southern Oscillation(ENSO)amplitude in the tropical Pacific during 1901-2010.The simulating results show that sea surface salinity(SSS)variation in the region exhibits notable and coherent interdecadal variability signal,which is closely associated with the Interdecadal Pacific Oscillation(IPO).As salinity increases or reduces,the SSS modulations on ENSO amplitude during its warm/cold events vary asymmetrically with positive/negative IPO phases.Physically,salinity interdecadal variability can enhance or reduce ENSO-related conditions in upper-ocean stratification,contributing noticeably to ENSO variability.Salinity anomalies associated with the mixed layer depth and barrier layer thickness can modulate ENSO amplitude during positive and negative IPO phases,resulting in the asymmetry of sea surface temperature(SST)anomaly in the tropical Pacific.During positive IPO phases,SSS interdecadal variability contributes positively to El Niño amplitude but negatively to La Niña amplitude by enhancing or reducing SSS interannual variability,and vice versa during negative IPO phases.Quantitatively,the results indicate that the modulation of the ENSO amplitude by the SSS interdecadal variability is 15%-28%during negative IPO phases and 30%-20%during positive IPO phases,respectively.Evidently,the SSS interdecadal variability associated with IPO and its modulation on ENSO amplitude in the tropical Pacific are among factors essentially contributing ENSO diversity.
基金The National Natural Science Foundation of China under contract Nos 42206205,41976188 and 42276205.
文摘The spaceborne platform has unprecedently provided the global eddy-permitting(typically about 0.25°)products of sea surface salinity(SSS),however the existing SSS products can hardly resolve mesoscale motions due to the heavy noises therein and the over-smoothing in denoising processes.By means of the multi-fractal fusion(MFF),the high-resolution SSS product is synthesized with the template of sea surface temperature(SST).Two low-resolution SSS products and four SST products are considered as the source data and the templates respectively to determine the best combination.The fused products are validated by the in situ observations and intercompared via SSS maps,Singularity Exponent maps and wavenumber spectra.The results demonstrate that the MFF can perform a good work in mitigating the noises and improving the resolution.The combination of the climate change initiative SSS and the remote sensing system SST can produce the 0.1°denoised product whose global mean standard derivation of salinity against Argo is 0.21 and the feature resolution can reach 30−40 km.
基金supported by the Na-tional Natural Science Foundation of China(Nos.62175105,61875086)Fundamental Research Funds for the Cen-tral Universities of China(No.ILB240041A24)。
文摘A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial acoustic modes in 1060-XP SMF show different sensitivities to temperature and salinity.Based on the new phenomenon that different radial acoustic modes have different frequency shift-temperature and frequency shift-salinity coefficients,we propose a novel method for simultaneously measuring temperature and salinity by measuring the frequency shift changes of two FBS scattering peaks.In a proof-of-concept experiment,the temperature and salinity measurement errors are 0.12℃and 0.29%,respectively.The proposed method for simultaneously measuring temperature and salinity has the potential applications such as ocean surveying,food manufacturing and pharmaceutical engineering.
文摘Soil salinity is a major limiting factor for crop production in coastal areas of Bangladesh. Cheap and sustainable management of soil salinity is hence most sought out topics in agricultural research. Conceptualizing that idea in mind, a pot experiment was conducted in the Department of Soil, Water & Environment, University of Dhaka in order to analyze if common organic amendments (rice straw, saw dust) coupled with reduce photoperiod can mitigate salinity effect on the growth of bean (Phaseolus vulgaris). The experiment was set up following completely randomized design (CRD) with nine treatments and three replications containing Tc (Control), T1 (Ambient photoperiod + 110 mM Salinity treatment + Rice straw), T2 (Reduced photoperiod + 110 mM Salinity treatment + Rice straw), T3 (Ambient photoperiod + 220 mM Salinity treatment + Rice straw), T4 (Reduced photoperiod + 220 mM Salinity treatment + Rice straw), T5 (Ambient photoperiod + 110 mM Salinity treatment + Saw dust), T6 (Reduced photoperiod + 110 mM Salinity treatment + Saw dust), T7 (Ambient photoperiod + 220 mM Salinity treatment + Saw dust) and T8 (Reduced photoperiod + 220 mM Salinity treatment + Saw dust). Organic amendments were used separately at the rate of 12 ton/ha. The highest plant height (98.67 cm), root length (12.5 cm), pod number (10.33), leaf area (13.99 cm2), fresh weight (680 kg/ha), dry weight (316.67 kg/ha) were recorded with the treatment T1 while the second-best treatment was treatment T2 (with highest harvest index 0.040) and these results were statistically significant (p < 0.001). In post-harvest soil, pH, EC, OC, OM;available N, P, K, S;total Ca, Mg, Zn, Mn were increased significantly in treatment T1. The overall results illustrated that the best growth and yield performances were achieved in the treatment T1 and T2.
文摘Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production well, the produced fluids commonly contain water. The understanding of this water’s constituents and volumes is vital for the sustainable continuity of production operations, as PW has a number of negative impacts on the infrastructure integrity of the operation. On the other hand, PW can be an alternative source of irrigation water as well as of industrial salt. Interestingly, both the quantity as well as the quality of PW do not remain constant but can vary, both progressively and erratically, even over short periods of time. This paper discusses such a situation of variable PW in an oil and gas operation in the State of Kuwait.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42330708 and 41820104001)。
文摘For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This study examines the Atterberg limits,shear strength,and compressibility of carbonate saline soil samples with different NaHCO3 contents in Northeast China.The mechanism underlying the influence of salt content on soil macroscopic properties was investigated based on a volumetric flask test,a mercury intrusion porosimetry(MIP)test,and a scanning electron microscopic(SEM)test.The results demonstrated that when NaHCO3 contents were lower than the threshold value of 1.5%,the bound water film adsorbed on the surface of clay particles thickened continuously,and correspondingly,the Atterberg limits and plasticity index increased rapidly as the increase of sodium ion content.Meanwhile,the bonding force between particles was weakened,the dispersion of large aggregates was enhanced,and the soil structure became looser.Macroscopically,the compressibility increased and the shear strength(mainly cohesion)decreased by 28.64%.However,when the NaHCO3 content exceeded the threshold value of 1.5%,the salt gradually approached solubility and filled the pores between particles in the form of crystals,resulting in a decrease in soil porosity.The cementation effect generated by salt crystals increased the bonding force between soil particles,leading to a decrease in plasticity index and an improvement in soil mechanical properties.Moreover,this work provides valuable suggestions and theoretical guidance for the scientific utilization of carbonate saline soil in backfill engineering projects.
基金supported by the National Key Research and Development Program(2018YFD1000400)National Natural Science Foundation of China(Grant No.32002084).
文摘Basic helix–loop–helix(bHLH)proteins play pivotal roles in plant growth,development,and stress responses.However,the molecular and functional properties of bHLHs have not been fully characterized.In this study,a novel XI subgroup of the bHLH protein gene RcbHLH59 was isolated and identified in rose(Rosa sp.).This gene was induced by salinity stress in both rose leaves and roots,and functioned as a transactivator.Accordingly,silencing RcbHLH59 affected the antioxidant system,^(Na+/K+)balance,and photosynthetic system,thereby reducing salt tolerance,while the transient overexpression of RcbHLH59 improved salinity stress tolerance.Additionally,RcbLHLH59 was found to regulate the expression of sets of pathogenesis-related(PR)genes in RcbHLH59-silenced(TRV-RcbHLH59)and RcbHLH59-overexpressing(RcbHLH59-OE)rose plants.The RcPR4/1 and RcPR5/1 transcript levels showed opposite changes in the TRVRcbHLH59 and RcbHLH59-OE lines,suggesting that these two genes are regulated by RcbHLH59.Further analysis revealed that RcbHLH59 binds to the promoters of RcPR4/1 and RcPR5/1,and that the silencing of RcPR4/1 or RcPR5/1 led to decreased tolerance to salinity stress.Moreover,callose degradation-and deposition-related genes were impaired in RcPR4/1-or RcPR5/1-silenced plants,which displayed a salt tolerance phenotype by balancing the ^(Na+/K+)ratio through callose deposition.Collectively,our data highlight a new RcbLHLH59-RcPRs module that positively regulates salinity stress tolerance by balancing Na^(+)/K^(+)and through callose deposition in rose plants.
文摘Carex species are widely used in many parts of the world and contain a large number of ecologically diverse species.Among the Carex species,some of them are known to be glycophytes,while others are halophytes.Carex morrowii Boott(Cyperaceae)is resistant to trample through their root structure and has an essential ornamental value in the landscape with their leaves.However,no information was found about the level of salinity tolerance/sensitivity of the Carex morrowii among these species.In the present study,changes in trace element contents(Na,K,Ca,Cu,Mn,Mg,Ni,Fe,P,Zn,and N)and their transport from roots to leaves,osmotic regulation,alterations in chlorophyll and carotenoid contents,nitrogen assimilation(nitrate reductase activity;NRA)and total soluble protein content in both roots and leaves of Carex morrowii under different salinity concentrations(50 mM,100 mM,200 mM and 300 mM NaCl)were examined in detail.Our study provides the first detailed data concerning the responses of leaves and roots and the determination of the level of salinity tolerance/sensitivity of the Carex morrowii.The K+/Na+ratio was preserved up to 200 mM NaCl,and accordingly,the element uptake and transport ratios showed that they could control moderate NaCl levels.Ca homeostasis that is maintained even in 200 mM NaCl concentration can be effective in maintaining the structural integrity and selective permeability of the cell membranes,while 300 mM NaCl concentration caused decreased photosynthetic pigments,and deterioration in element content and compartmentation.Moreover,these data suggest that plant parts of Carex morrowii respond differently against varied levels of salinity stress.Although the decrease in NR activity at 200 mM and 300 mM NaCl concentrations in the leaves,NR activity was maintained in the roots.Consequently,Carex morrowii is moderately tolerant to salinity and the carotenoid content and osmotic regulation of Carex morrowii appears to be instrumental in its survival at different salinity levels.Especially the roots of Carex morrowii have a remarkable role in salinity tolerance.
基金supported by the National Natural Science Foundation of China(NSFCGrant No.42030410)+3 种基金the Laoshan Laboratory(Grant No.LSKJ202202403)the National Key Research and Development Program on Monitoring,Early Warning and Prevention of Major Natural Disaster(Grant Nos.2019YFC1510004,2020YFA0608902)supported by the NSFC(Grant No.41976026)supported by the Startup Foundation for Introducing Talent of NUIST。
文摘It has been recognized that salinity variability in the tropical Pacific is closely related to the Interdecadal Pacific Oscillation(IPO).Here,we use model simulations from 1900 to 2017 to illustrate obvious asymmetries of salinity variability in the tropical Pacific during positive and negative IPO phases.The amplitude of salinity variability in the tropical Pacific during positive IPO phases is larger than that during negative IPO phases,with a more westward shift of a large Sea Surface Salinity(SSS)anomaly along the equator.Salinity budget analyses show that the asymmetry of salinity variability during positive and negative IPO phases is dominated by the difference in the surface forcing associated with the freshwater flux[FWF,precipitation(P)minus evaporation(E)],with a contribution of 40%–50%near the dateline on the equator.Moreover,the relationships between the salinity variability and its budget terms also show differences in their leadlag correlations during positive and negative IPO phases.These differences in salinity variability during different IPO phases produce asymmetric effects on seawater density which can reduce or enhance upper-ocean stratification.Therefore,the salinity effects may modulate the intensity of El Nino-Southern Oscillation(ENSO),resulting in an enhanced(reduced)El Nino but a reduced(enhanced)La Ni?a during positive(negative)IPO phases by 1.6℃psu^(-1)(1.3℃psu^(-1)),respectively.It is suggested that the asymmetry of salinity variability may be related to the recent change in ENSO amplitude associated with the IPO,which can help elucidate ENSO diversity.
基金Supported by the National Key Research and Development Program on MonitoringEarly Warning and Prevention of Major Natural Disaster (No.2019YFC1510004)the Laoshan Laboratory (No.LSKJ202202403)。
文摘Ocean salinity is an important variable that affects the ocean stratification.We compared the salinity and ocean stratification in the tropical Pacific derived from the Argo(Array for Real-time Geostrophic Oceanography data),EN4(Ensemble 4 analysis),SODA(the Simple Ocean Data Assimilation reanalysis),IAP(Institute of Atmospheric Physics data),and ORAS4(Ocean Reanalysis System 4)over 2005–2017.Results show that the spatial distribution of climatological mean of sea surface salinity(SSS)in all the products is consistent,and the low salinity region showed large deviation and strong dispersion.The Argo has the smallest RMSE and the highest correlation with the ensemble mean,while the IAP shows a high-salinity deviations relative to other datasets.All the products show high positive correlations between the sea surface density(SSD)and SSS with respect to the deviations of climatological mean from ensemble mean,suggesting that the SSD deviation may be mainly influenced by the SSS deviation.In the aspect of the ocean stratification,the mixed layer depth(MLD)climatological mean in the Argo shows the highest correlation with the ensemble mean,followed by EN4,IAP,ORAS4,and SODA.The Argo and EN4 show thicker barrier layer(BL)relative to the ensemble mean while the SODA displays the largest negative deviation in the tropical western Pacific.Furthermore,the EN4,ORAS4,and IAP underestimate the stability in the upper ocean at the depths of 20–140 m,while Argo overestimates ocean stability.The salinity fronts in the western-central equatorial Pacific from Argo,EN4,and ORAS4 are consistent,while those from SODA and IAP show large deviations with a westward position in amplitude of 0°–6°and 0°–10°,respectively.The SSS trend patterns from all the products are consistent in having ensemble mean with high spatial correlations of 0.95–0.97.
基金supported by the State Assignment of the Ministry of Science and Higher Education of the RF(No.0287-2021-0019).
文摘Cladocera are filter feeders abundant in freshwaters,which consume phytoplankton particles in wide size and taxonomic ranges.The ability of cladocerans to control phytoplankton abundance by grazing is determined by various factors including the characteristics of phytoplankton.Freshwater salinization may reduce the strength of top-down grazing control of phytoplankton because of the detrimental effects of salinity on the grazing intensity of zooplankters.We performed grazing experiments with two species of Cladocera of different body lengths to test their ability to graze on phytoplankton in natural waters differing in salinity and size and taxonomic composition of food particles.Grazing experiments demonstrated that the grazing rate was mostly controlled by the abundance of phytoplankton in the medium.The grazing rate was reduced at salinity ca.above 3 g/L of NaCl in the medium.The lower grazing rate was observed in the medium with larger phytoplankton particles.Both species predominantly consumed phytoplankton particles with a diameter of 6-12μm,which may shift the size distribution of phytoplankton towards a larger average diameter of particles.The taxon-specific feeding was also observed,as both species predominantly consumed diatom algae.Thus,we found that because of grazing,the size and taxonomic characteristics of phytoplankton are shifted towards a less edible community.The detrimental effect of elevated salinity on grazing rate supports growing concern about freshwater salinization negatively affecting water quality,particularly reducing top-down grazing control of phytoplankton.
基金the Department of Science and Technology,Government of India(Grant No.CRG/2020/003078).
文摘Rice is sensitive to salinity stress at both the seedling and reproductive stages.The present study used 145 rice genotypes comprising of 100 landraces and 45 advanced breeding lines collected from different regions of India.These genotypes were evaluated in hydroponics under control[electrical conductivity(ECe)~1.2 dS/m]and saline(ECe~10.0 dS/m)environments along with susceptible(IR29)and tolerant(FL478)checks.The stress susceptibility index for eight morphophysiological traits was estimated.Analysis of variance showed significant differences among the genotypes for all the parameters studied in control,stress and relative stress conditions.We identified 3 landraces(Kuttimanja,Tulasimog and IET-13713I)as tolerant and 14 lines as moderately tolerant to salt stress.Strong correlations in the morphological(root and shoot lengths)and physiological traits(shoot Na^(+),Ca^(2+)and Mg^(2+)contents,and Na^(+)/K^(+)ratio)were observed under all the conditions.The hierarchical cluster analysis grouped the genotypes into five clusters,among which cluster Ⅱ comprised salt-tolerant lines.Haplotyping of Saltol region using 11 simple sequence repeat markers on 17 saline tolerant and moderately tolerant lines was conducted.Markers AP3206F,RM10793 and RM3412b,located close to SKC1 gene(11.23‒12.55 Mb),displayed diverse allelic variations and they were not related to the FL478 type.In this region,tolerant lines like Kuttimanja,IET-13713I and Tulasimog have new alleles.As a result,these lines may be suitable candidates for novel genomic regions governing rice salinity tolerance.Salt-tolerance ability of Kuttimanja,Tulasimog and IET-13713I was validated in two years in three salinity stress environments.These promising lines can be used in breeding programs to broaden the genetic base of salinity tolerance in rice,and it may help to dissect key genomic regions responsible for salinity tolerance.