Cooperative guidance problems of multiple missiles are considered in this article. A cooperative guidance scheme, where coordination algorithms and local guidance laws are combined together, is proposed. This scheme a...Cooperative guidance problems of multiple missiles are considered in this article. A cooperative guidance scheme, where coordination algorithms and local guidance laws are combined together, is proposed. This scheme actually builds up a hierarchical cooperative guidance architecture, which may provide a general solution to the multimissile cooperative guidance problems. In the case of salvo attacks which require missiles to hit the target simultaneously, both centralized and distributed coordination algorithms are derived based on the impact-time-control guidance (ITCG) law. Numerical simulations are performed to demonstrate the effectiveness of the proposed approaches.展开更多
Salvo attacking a surface target by multiple missiles is an effective tactic to enhance the lethality and penetrate the defense system. However, existing cooperative guidance laws in the midcourse or terminal course a...Salvo attacking a surface target by multiple missiles is an effective tactic to enhance the lethality and penetrate the defense system. However, existing cooperative guidance laws in the midcourse or terminal course are not suitable for long-and medium-range missiles or stand-off attacking. Because the initial conditions of cooperative terminal guidance that are generally generated from the mid-course flight may not lead to a successful cooperative terminal guidance without proper mid-course flight adjustment. Meanwhile, cooperative guidance in the mid-course cannot solely guarantee the accuracy of a simultaneous arrival of multiple missiles. Therefore, a joint mid-course and terminal course cooperative guidance law is developed. By building a distinct leader-follower framework, this paper proposes an efficient coordinated Dubins path planning method to synchronize the arrival time of all engaged missiles in the mid-course flight. The planned flight can generate proper initial conditions for cooperative terminal guidance, and also benefit an earliest simultaneous arrival. In the terminal course, an existing cooperative proportional navigation guidance law guides all the engaged missiles to arrive at a target accurately and simultaneously.The integrated guidance law for an intuitive application is summarized. Simulations demonstrate that the proposed method can generate fast and accurate salvo attack.展开更多
This paper proposes a solution for the problem of cooperative salvo attack of multiple cruise missiles against targets in a group. Synchronization of the arrival time of missiles to hit their common target, minimizing...This paper proposes a solution for the problem of cooperative salvo attack of multiple cruise missiles against targets in a group. Synchronization of the arrival time of missiles to hit their common target, minimizing the time consumption of attack and maximizing the expected damage to group targets are taken into consideration simultaneously. These operational objectives result in a hierarchical mixed-variable optimization problem which includes two types of subproblems, namely the multi-objective missile-target assignment(MOMTA) problem at the upper level and the time-optimal coordinated path planning(TOCPP) problems at the lower level. In order to solve the challenging problem, a recently proposed coordinated path planning method is employed to solve the TOCPP problems to achieve the soonest salvo attack against each target. With the aim of finding a more competent solver for MOMTA, three state-of-the-art multi-objective optimization methods(MOMs),namely NSGA-II, MOEA/D and DMOEA-εC, are adopted. Finally, a typical example is used to demonstrate the advantage of the proposed method. A simple rule-based method is also employed for comparison. Comparative results show that DMOEA-εC is the best choice among the three MOMs for solving the MOMTA problem. The combination of DMOEA-εC for MOMTA and the coordinated path planning method for TOCPP can generate obviously better salvo attack schemes than the rule-based method.展开更多
基于重叠网格技术,VOF(volume of fluid)多相流模型以及改进型分离涡模型相结合方法,建立了基于主动通气下双体水下齐射降载增稳数值方法,分析了通气量对空泡形态、载荷特性及运动稳定性的影响规律。结果表明:在一定范围内,随着通气量...基于重叠网格技术,VOF(volume of fluid)多相流模型以及改进型分离涡模型相结合方法,建立了基于主动通气下双体水下齐射降载增稳数值方法,分析了通气量对空泡形态、载荷特性及运动稳定性的影响规律。结果表明:在一定范围内,随着通气量的增加,当通气空泡完全包裹航行体孔口下方区域后,横向载荷幅值和交变峰值均减小,同时,产生的扶偏力矩能够大幅度减小双发航行体之间狭长流域产生的流动干扰现象。另外,为了避免发生共振现象,设计航行体时应尽量使其固有频率在通气效应产生的低频范围之外。综合分析,主动通气方式对多体水下齐射运动姿态的不稳定性具有较好的改善作用。展开更多
基金Foundation items: National Natural Science Foundation of China (60674103) Aeronautical Science Foundation of China (2006ZC51026)
文摘Cooperative guidance problems of multiple missiles are considered in this article. A cooperative guidance scheme, where coordination algorithms and local guidance laws are combined together, is proposed. This scheme actually builds up a hierarchical cooperative guidance architecture, which may provide a general solution to the multimissile cooperative guidance problems. In the case of salvo attacks which require missiles to hit the target simultaneously, both centralized and distributed coordination algorithms are derived based on the impact-time-control guidance (ITCG) law. Numerical simulations are performed to demonstrate the effectiveness of the proposed approaches.
基金supported by the National Natural Science Foundation of China (No.61304215)supported by the Beijing Education Committee Cooperation Building Foundation Project (CSYS100070417)
文摘Salvo attacking a surface target by multiple missiles is an effective tactic to enhance the lethality and penetrate the defense system. However, existing cooperative guidance laws in the midcourse or terminal course are not suitable for long-and medium-range missiles or stand-off attacking. Because the initial conditions of cooperative terminal guidance that are generally generated from the mid-course flight may not lead to a successful cooperative terminal guidance without proper mid-course flight adjustment. Meanwhile, cooperative guidance in the mid-course cannot solely guarantee the accuracy of a simultaneous arrival of multiple missiles. Therefore, a joint mid-course and terminal course cooperative guidance law is developed. By building a distinct leader-follower framework, this paper proposes an efficient coordinated Dubins path planning method to synchronize the arrival time of all engaged missiles in the mid-course flight. The planned flight can generate proper initial conditions for cooperative terminal guidance, and also benefit an earliest simultaneous arrival. In the terminal course, an existing cooperative proportional navigation guidance law guides all the engaged missiles to arrive at a target accurately and simultaneously.The integrated guidance law for an intuitive application is summarized. Simulations demonstrate that the proposed method can generate fast and accurate salvo attack.
基金supported by the National Natural Science Foundation of China under Grant No.61673058the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization under Grant No.U1609214
文摘This paper proposes a solution for the problem of cooperative salvo attack of multiple cruise missiles against targets in a group. Synchronization of the arrival time of missiles to hit their common target, minimizing the time consumption of attack and maximizing the expected damage to group targets are taken into consideration simultaneously. These operational objectives result in a hierarchical mixed-variable optimization problem which includes two types of subproblems, namely the multi-objective missile-target assignment(MOMTA) problem at the upper level and the time-optimal coordinated path planning(TOCPP) problems at the lower level. In order to solve the challenging problem, a recently proposed coordinated path planning method is employed to solve the TOCPP problems to achieve the soonest salvo attack against each target. With the aim of finding a more competent solver for MOMTA, three state-of-the-art multi-objective optimization methods(MOMs),namely NSGA-II, MOEA/D and DMOEA-εC, are adopted. Finally, a typical example is used to demonstrate the advantage of the proposed method. A simple rule-based method is also employed for comparison. Comparative results show that DMOEA-εC is the best choice among the three MOMs for solving the MOMTA problem. The combination of DMOEA-εC for MOMTA and the coordinated path planning method for TOCPP can generate obviously better salvo attack schemes than the rule-based method.
文摘基于重叠网格技术,VOF(volume of fluid)多相流模型以及改进型分离涡模型相结合方法,建立了基于主动通气下双体水下齐射降载增稳数值方法,分析了通气量对空泡形态、载荷特性及运动稳定性的影响规律。结果表明:在一定范围内,随着通气量的增加,当通气空泡完全包裹航行体孔口下方区域后,横向载荷幅值和交变峰值均减小,同时,产生的扶偏力矩能够大幅度减小双发航行体之间狭长流域产生的流动干扰现象。另外,为了避免发生共振现象,设计航行体时应尽量使其固有频率在通气效应产生的低频范围之外。综合分析,主动通气方式对多体水下齐射运动姿态的不稳定性具有较好的改善作用。