In Part I, the authors succeeded in coupling the spectral atmospheric model (SAMIL_R42L9) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institut...In Part I, the authors succeeded in coupling the spectral atmospheric model (SAMIL_R42L9) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS) with the land surface model, Atmosphere-Vegetation-Interaction-Model (AVIM) and analyzed the climate basic state and land surface physical fluxes simulated by R42_AVIM. In this Part Ⅱ, we further evaluate the simulated results of the biological processes, including leaf area index (LAI), biomass and net primary productivity (NPP) etc. Results indicate that R42_AVIM can simulate the global distribution of LAI and has good consistency with the monthly mean LAI provided by Max Planck Institute for Meteorology. The simulated biomass corresponds reasonably to the vegetation classifications. In addition, the simulated annual mean NPP has a consistent distribution with the data provided by IGBP and MODIS, and compares well with the work in literature. This land-atmosphere coupled model will offer a new experiment tool for the research on the two-way interaction between climate and biosphere, and the global terrestrial ecosystem carbon cycle.展开更多
A new two-way land-atmosphere interaction model (R42_AVIM) is fulfilled by coupling the spectral atmospheric model (SAMIL_R42L9) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences...A new two-way land-atmosphere interaction model (R42_AVIM) is fulfilled by coupling the spectral atmospheric model (SAMIL_R42L9) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS) with the land surface model, Atmosphere-Vegetation-Interaction-Model (AVIM). In this coupled model, physical and biological components of AVIM are both included. Climate base state and land surface physical fluxes simulated by R42_AVIM are analyzed and compared with the results of R42_SSIB [which is coupled by SAMIL_R42L9 and Simplified Simple Biosphere (SSIB) models]. The results show the performance of the new model is closer to the observations. It can basically guarantee that the land surface energy budget is balanced, and can simulate June-July-August (JJA) and December-January- February (DJF) land surface air temperature, sensible heat flux, latent heat flux, precipitation, sea level pressure and other variables reasonably well. Compared with R42_SSIB, there are obvious improvements in the JJA simulations of surface air temperature and surface fluxes. Thus, this land-atmosphere coupled model will offer a good experiment platform for land-atmosphere interaction research.展开更多
文摘In Part I, the authors succeeded in coupling the spectral atmospheric model (SAMIL_R42L9) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS) with the land surface model, Atmosphere-Vegetation-Interaction-Model (AVIM) and analyzed the climate basic state and land surface physical fluxes simulated by R42_AVIM. In this Part Ⅱ, we further evaluate the simulated results of the biological processes, including leaf area index (LAI), biomass and net primary productivity (NPP) etc. Results indicate that R42_AVIM can simulate the global distribution of LAI and has good consistency with the monthly mean LAI provided by Max Planck Institute for Meteorology. The simulated biomass corresponds reasonably to the vegetation classifications. In addition, the simulated annual mean NPP has a consistent distribution with the data provided by IGBP and MODIS, and compares well with the work in literature. This land-atmosphere coupled model will offer a new experiment tool for the research on the two-way interaction between climate and biosphere, and the global terrestrial ecosystem carbon cycle.
基金This study is jointly supported by the National Key Basic Research 2006CB403607the Chinese Academy of Sciences(CAS)International Partnership Creative Group"The climate system model development and application studies"and the National Natural Science Foundation of China under Grant Nos.40221503,40475027 and 40523001.
文摘A new two-way land-atmosphere interaction model (R42_AVIM) is fulfilled by coupling the spectral atmospheric model (SAMIL_R42L9) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS) with the land surface model, Atmosphere-Vegetation-Interaction-Model (AVIM). In this coupled model, physical and biological components of AVIM are both included. Climate base state and land surface physical fluxes simulated by R42_AVIM are analyzed and compared with the results of R42_SSIB [which is coupled by SAMIL_R42L9 and Simplified Simple Biosphere (SSIB) models]. The results show the performance of the new model is closer to the observations. It can basically guarantee that the land surface energy budget is balanced, and can simulate June-July-August (JJA) and December-January- February (DJF) land surface air temperature, sensible heat flux, latent heat flux, precipitation, sea level pressure and other variables reasonably well. Compared with R42_SSIB, there are obvious improvements in the JJA simulations of surface air temperature and surface fluxes. Thus, this land-atmosphere coupled model will offer a good experiment platform for land-atmosphere interaction research.