An error correction technique to achieve a 14-bit successive approximation register analog-to-digital converter(SAR ADC) is proposed. A tunable split capacitor is designed to eliminate the mismatches caused by parasit...An error correction technique to achieve a 14-bit successive approximation register analog-to-digital converter(SAR ADC) is proposed. A tunable split capacitor is designed to eliminate the mismatches caused by parasitic capacitors. The linearity error of capacitor array caused by process mismatch is calibrated by a novel calibration capacitor array that can improve the sampling rate. The dual-comparator topology ensures both the speed and precision of the ADC. The simulation results show that the SAR ADC after calibration achieves 83.07 dB SNDR and 13.5 bit ENOB at 500 kilosamples/s.展开更多
基金Supported by National Science and Technology Major Project of China(No.2012ZX03004008)
文摘An error correction technique to achieve a 14-bit successive approximation register analog-to-digital converter(SAR ADC) is proposed. A tunable split capacitor is designed to eliminate the mismatches caused by parasitic capacitors. The linearity error of capacitor array caused by process mismatch is calibrated by a novel calibration capacitor array that can improve the sampling rate. The dual-comparator topology ensures both the speed and precision of the ADC. The simulation results show that the SAR ADC after calibration achieves 83.07 dB SNDR and 13.5 bit ENOB at 500 kilosamples/s.