In this study,analyses are conducted on the information features of a construction site,a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Ba...In this study,analyses are conducted on the information features of a construction site,a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Based on features of land cover of the coal mining area,on texture feature extraction and a selection method of a gray-level co-occurrence matrix (GLCM) of the SAR image,we propose in this study that the optimum window size for computing the GLCM is an appropriate sized window that can effectively distinguish different types of land cover. Next,a band combination was carried out over the text feature images and the band-filtered SAR image to secure a new multi-band image. After the transformation of the new image with principal component analysis,a classification is conducted selectively on three principal component bands with the most information. Finally,through training and experimenting with the samples,a better three-layered BP neural network was established to classify the SAR image. The results show that,assisted by texture information,the neural network classification improved the accuracy of SAR image classification by 14.6%,compared with a classification by maximum likelihood estimation without texture information.展开更多
SAR images not only have the characteristics of all-ay, all-eather, but also provide object information which is different from visible and infrared sensors. However, SAR images have some faults, such as more speckles...SAR images not only have the characteristics of all-ay, all-eather, but also provide object information which is different from visible and infrared sensors. However, SAR images have some faults, such as more speckles and fewer bands. The authors conducted the experiments of texture statistics analysis on SAR image features in order to improve the accuracy of SAR image interpretation. It is found that the texture analysis is an effective method for improving the accuracy of the SAR image interpretation.展开更多
基金Projects 40771143 supported by the National Natural Science Foundation of China2007AA12Z162 by the Hi-tech Research and Development Program of China
文摘In this study,analyses are conducted on the information features of a construction site,a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Based on features of land cover of the coal mining area,on texture feature extraction and a selection method of a gray-level co-occurrence matrix (GLCM) of the SAR image,we propose in this study that the optimum window size for computing the GLCM is an appropriate sized window that can effectively distinguish different types of land cover. Next,a band combination was carried out over the text feature images and the band-filtered SAR image to secure a new multi-band image. After the transformation of the new image with principal component analysis,a classification is conducted selectively on three principal component bands with the most information. Finally,through training and experimenting with the samples,a better three-layered BP neural network was established to classify the SAR image. The results show that,assisted by texture information,the neural network classification improved the accuracy of SAR image classification by 14.6%,compared with a classification by maximum likelihood estimation without texture information.
基金theNationalNaturalScienceFoundationofChina (No .40 0 2 30 0 4 )
文摘SAR images not only have the characteristics of all-ay, all-eather, but also provide object information which is different from visible and infrared sensors. However, SAR images have some faults, such as more speckles and fewer bands. The authors conducted the experiments of texture statistics analysis on SAR image features in order to improve the accuracy of SAR image interpretation. It is found that the texture analysis is an effective method for improving the accuracy of the SAR image interpretation.