The synonymous codon usage in the translational initiation and termination regions of genes of severe acute respiratory syndrome (SARS) coronavirus and five other viruses in Coronaviridae was systematically analyzed.T...The synonymous codon usage in the translational initiation and termination regions of genes of severe acute respiratory syndrome (SARS) coronavirus and five other viruses in Coronaviridae was systematically analyzed.The results indicate that most minor codons for these coronaviruses are preferentially used in the initial and terminal region.The minor codons preferentially used in the initial region are thought to have a negative effect on gene expression,which can be explained by the minor codon modulator hypothesis.It also indicates that the minor codons preferentially used in the terminal region may regulate the level of gene expression.The proposed results strongly imply that the minor codon modulator hypothesis can be applied to both some bacteria and some viruses.展开更多
In order to establish the eukaryotic cell lines for inducible control of SARS-CoV nucleocapsid gene expression.The recombinant plasmid of pTRE-Tight-SARS-N was constructed by using the plasmid p8S as the PCR template ...In order to establish the eukaryotic cell lines for inducible control of SARS-CoV nucleocapsid gene expression.The recombinant plasmid of pTRE-Tight-SARS-N was constructed by using the plasmid p8S as the PCR template which contains a cDNA clone covering the nucleocapsid gene of SARS-CoV HKU-39449. Restriction enzymes digestion and sequence analysis indicated the recombinant plasmid of pTRE-Tight-SARS-N contained the nucleocapsid gene with the optimized nucleotide sequence which will improve the translation efficiency. Positive cell clones were selected by cotransfecting pTRE-Tight-SARS-N with the linear marker pPUR to BHK-21 Tet-on cells in the presence of puromycin. A set of double-stable eukaryotic cell lines (BHK-Tet-SARS-N) with inducible control of the SARS-CoV neucleocapsid gene expression was identified by using SDS-PAGE and Western-blot analysis. The expression of SARS-CoV nucleocapsid protein was tightly regulated by the varying concentration of doxcycline in the constructed double-stable cell line. The constructed BHK-Tet-SARS-N cell strains will facilitate the rescue of SARS-CoV in vitro and the further reverse genetic research of SARS-CoV.展开更多
文摘The synonymous codon usage in the translational initiation and termination regions of genes of severe acute respiratory syndrome (SARS) coronavirus and five other viruses in Coronaviridae was systematically analyzed.The results indicate that most minor codons for these coronaviruses are preferentially used in the initial and terminal region.The minor codons preferentially used in the initial region are thought to have a negative effect on gene expression,which can be explained by the minor codon modulator hypothesis.It also indicates that the minor codons preferentially used in the terminal region may regulate the level of gene expression.The proposed results strongly imply that the minor codon modulator hypothesis can be applied to both some bacteria and some viruses.
基金This work was supported by the European Commission (SARS-DTV ) SP22-CT-2004–511064)the State Key Laboratory of Pathogen and Biosecunity SKLPBS0918
文摘In order to establish the eukaryotic cell lines for inducible control of SARS-CoV nucleocapsid gene expression.The recombinant plasmid of pTRE-Tight-SARS-N was constructed by using the plasmid p8S as the PCR template which contains a cDNA clone covering the nucleocapsid gene of SARS-CoV HKU-39449. Restriction enzymes digestion and sequence analysis indicated the recombinant plasmid of pTRE-Tight-SARS-N contained the nucleocapsid gene with the optimized nucleotide sequence which will improve the translation efficiency. Positive cell clones were selected by cotransfecting pTRE-Tight-SARS-N with the linear marker pPUR to BHK-21 Tet-on cells in the presence of puromycin. A set of double-stable eukaryotic cell lines (BHK-Tet-SARS-N) with inducible control of the SARS-CoV neucleocapsid gene expression was identified by using SDS-PAGE and Western-blot analysis. The expression of SARS-CoV nucleocapsid protein was tightly regulated by the varying concentration of doxcycline in the constructed double-stable cell line. The constructed BHK-Tet-SARS-N cell strains will facilitate the rescue of SARS-CoV in vitro and the further reverse genetic research of SARS-CoV.