期刊文献+
共找到4,177篇文章
< 1 2 209 >
每页显示 20 50 100
A sub-grid scale model for Burgers turbulence based on the artificial neural network method
1
作者 Xin Zhao Kaiyi Yin 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期162-165,共4页
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis... The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence. 展开更多
关键词 Artificial neural network Back propagation method Burgers turbulence Large eddy simulation Sub-grid scale model
下载PDF
Numerical Study of the Biomechanical Behavior of a 3D Printed Polymer Esophageal Stent in the Esophagus by BP Neural Network Algorithm
2
作者 Guilin Wu Shenghua Huang +7 位作者 Tingting Liu Zhuoni Yang Yuesong Wu Guihong Wei Peng Yu Qilin Zhang Jun Feng Bo Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2709-2725,共17页
Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinica... Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice.However, esophageal stents of different types and parameters have varying adaptability and effectiveness forpatients, and they need to be individually selected according to the patient’s specific situation. The purposeof this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3Dprinting technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer, and established an artificial neural network model that could predict the radial forceof esophageal stents based on the content of TPU, PCL and print parameter. We selected three optimal ratios formechanical performance tests and evaluated the biomechanical effects of different ratios of stents on esophagealimplantation, swallowing, and stent migration processes through finite element numerical simulation and in vitrosimulation tests. The results showed that different ratios of polymer stents had different mechanical properties,affecting the effectiveness of stent expansion treatment and the possibility of postoperative complications of stentimplantation. 展开更多
关键词 Finite element method 3D printing polymer esophageal stent artificial neural network
下载PDF
Research on a TOPSIS energy efficiency evaluation system for crude oil gathering and transportation systems based on a GA-BP neural network
3
作者 Xue-Qiang Zhang Qing-Lin Cheng +2 位作者 Wei Sun Yi Zhao Zhi-Min Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期621-640,共20页
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud... As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems. 展开更多
关键词 Crude oil gathering and transportation system GA-BP neural network Energy efficiency evaluation TOPSIS evaluation method Energy saving and consumption reduction
下载PDF
Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction
4
作者 Sureka Sivavelu Venkatesh Palanisamy 《Computers, Materials & Continua》 SCIE EI 2024年第3期3469-3487,共19页
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w... The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods. 展开更多
关键词 Software defect prediction feature selection nonparametric statistical Torgerson-Gower scaling technique quadratic censored regressive convolution deep neural network softstep activation function nelder-mead method
下载PDF
Adaptive Backstepping Terminal Sliding Mode Control Method Based on Recurrent Neural Networks for Autonomous Underwater Vehicle 被引量:10
5
作者 Chao Yang Feng Yao Ming-Jun Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期228-243,共16页
The trajectory tracking control problem is addressed for autonomous underwater vehicle(AUV) in marine environ?ment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic ... The trajectory tracking control problem is addressed for autonomous underwater vehicle(AUV) in marine environ?ment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking accuracy of AUV, an adaptive backstepping terminal sliding mode control based on recurrent neural networks(RNN) is proposed. Firstly, considering the inaccu?rate of thrust model of thruster, a Taylor’s polynomial is used to obtain the thrust model errors. And then, the dynamic modeling uncertainty and thrust model errors are combined into the system model uncertainty(SMU) of AUV; through the RNN, the SMU and ocean current disturbance are classified, approximated online. Finally, the weights of RNN and other control parameters are adjusted online based on the backstepping terminal sliding mode controller. In addition, a chattering?reduction method is proposed based on sigmoid function. In chattering?reduction method, the sigmoid function is used to realize the continuity of the sliding mode switching function, and the sliding mode switching gain is adjusted online based on the exponential form of the sliding mode function. Based on the Lyapu?nov theory and Barbalat’s lemma, it is theoretically proved that the AUV trajectory tracking error can quickly converge to zero in the finite time. This research proposes a trajectory tracking control method of AUV, which can e ectively achieve high?precision trajectory tracking control of AUV under the influence of the uncertain factors. The feasibility and e ectiveness of the proposed method is demonstrated with trajectory tracking simulations and pool?experi?ments of AUV. 展开更多
关键词 Autonomous underwater vehicle(AUV) Trajectory tracking neural networks Backstepping method Terminal sliding mode Adaptive control
下载PDF
Load Reduction Test Method of Similarity Theory and BP Neural Networks of Large Cranes 被引量:4
6
作者 YANG Ruigang DUAN Zhibin +2 位作者 LU Yi WANG Lei XU Gening 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期145-151,共7页
Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solv... Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes. 展开更多
关键词 similarity theory BP neural network large bridge crane load reduction equivalent test method
下载PDF
Linearization Learning Method of BP Neural Networks 被引量:4
7
作者 Zhou Shaoqian Ding Lixin +1 位作者 Zhang Jian Tang Xinhua 《Wuhan University Journal of Natural Sciences》 CAS 1997年第1期37-41,共5页
Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple ... Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple local minima on the learning error surfaces, which affect the learning rate and solving optimal weights. This paper proposes a learning method linearizing non linearity of the activation function and discusses its merits and demerits theoretically. 展开更多
关键词 BP neural networks activation function linearization method
下载PDF
Thermogram-based estimation of foot arterial blood flow using neural networks
8
作者 Yueping WANG Lizhong MU Ying HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期325-344,共20页
The altered blood flow in the foot is an important indicator of early diabetic foot complications.However,it is challenging to measure the blood flow at the whole foot scale.This study presents an approach for estimat... The altered blood flow in the foot is an important indicator of early diabetic foot complications.However,it is challenging to measure the blood flow at the whole foot scale.This study presents an approach for estimating the foot arterial blood flow using the temperature distribution and an artificial neural network.To quantify the relationship between the blood flow and the temperature distribution,a bioheat transfer model of a voxel-meshed foot tissue with discrete blood vessels is established based on the computed tomography(CT)sequential images and the anatomical information of the vascular structure.In our model,the heat transfer from blood vessels and tissue and the inter-domain heat exchange between them are considered thoroughly,and the computed temperatures are consistent with the experimental results.Analytical data are then used to train a neural network to determine the foot arterial blood flow.The trained network is able to estimate the objective blood flow for various degrees of stenosis in multiple blood vessels with an accuracy rate of more than 90%.Compared with the Pennes bioheat transfer equation,this model fully describes intra-and inter-domain heat transfer in blood vessels and tissue,closely approximating physiological conditions.By introducing a vascular component to an inverse model,the blood flow itself,rather than blood perfusion,can be estimated,directly informing vascular health. 展开更多
关键词 diabetic foot thermal analysis blood flow inverse method neural network
下载PDF
Combining unscented Kalman filter and wavelet neural network for anti-slug
9
作者 Chuan Wang Long Chen +7 位作者 Lei Li Yong-Hong Yan Juan Sun Chao Yu Xin Deng Chun-Ping Liang Xue-Liang Zhang Wei-Ming Peng 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3752-3765,共14页
The stability of the subsea oil and gas production system is heavily influenced by slug flow. One successful method of managing slug flow is to use top valve control based on subsea pipeline pressure. However, the com... The stability of the subsea oil and gas production system is heavily influenced by slug flow. One successful method of managing slug flow is to use top valve control based on subsea pipeline pressure. However, the complexity of production makes it difficult to measure the pressure of subsea pipelines, and measured values are not always accessible in real-time. The research introduces a technique for integrating Unscented Kalman Filter (UKF) and Wavelet Neural Network (WNN) to estimate the state of subsea pipeline pressure using historical data and a state model. The proposed method treats multiphase flow transport as a nonlinear model, with a dynamic WNN serving as the state observer. To achieve real-time state estimation, the WNN is included into the UKF algorithm to create a WNN-based UKF state equation. Integrate WNN and UKF in a novel way to predict system state accurately. The simulated results show that the approach can efficiently predict the inlet pressure and manage the slug flow in real-time using the riser's top pressure, outlet flow and valve opening. This method of estimate can significantly increase the control effect. 展开更多
关键词 State estimation Stable control method fusion Wavelet neural network Unscented Kalman filter
下载PDF
FIXED/PREASSIGNED-TIME SYNCHRONIZATION OF QUATERNION-VALUED NEURAL NETWORKS INVOLVING DELAYS AND DISCONTINUOUS ACTIVATIONS: A DIRECT APPROACH
10
作者 魏琬璐 胡成 +1 位作者 于娟 蒋海军 《Acta Mathematica Scientia》 SCIE CSCD 2023年第3期1439-1461,共23页
The fixed-time synchronization and preassigned-time synchronization are investigated for a class of quaternion-valued neural networks with time-varying delays and discontinuous activation functions. Unlike previous ef... The fixed-time synchronization and preassigned-time synchronization are investigated for a class of quaternion-valued neural networks with time-varying delays and discontinuous activation functions. Unlike previous efforts that employed separation analysis and the real-valued control design, based on the quaternion-valued signum function and several related properties, a direct analytical method is proposed here and the quaternion-valued controllers are designed in order to discuss the fixed-time synchronization for the relevant quaternion-valued neural networks. In addition, the preassigned-time synchronization is investigated based on a quaternion-valued control design, where the synchronization time is preassigned and the control gains are finite. Compared with existing results, the direct method without separation developed in this article is beneficial in terms of simplifying theoretical analysis, and the proposed quaternion-valued control schemes are simpler and more effective than the traditional design, which adds four real-valued controllers. Finally, two numerical examples are given in order to support the theoretical results. 展开更多
关键词 fixed-time synchronization preassigned-time synchronization quaternion-valued neural networks discontinuous activation direct analysis method
下载PDF
Physics-constrained neural network for solving discontinuous interface K-eigenvalue problem with application to reactor physics
11
作者 Qi-Hong Yang Yu Yang +3 位作者 Yang-Tao Deng Qiao-Lin He He-Lin Gong Shi-Quan Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第10期178-200,共23页
Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are ea... Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are easy to solve using traditional numerical methods albeit still challenging using neural networks for a wide range of practical problems.We present two networks,namely the Generalized Inverse Power Method Neural Network(GIPMNN)and Physics-Constrained GIPMNN(PC-GIPIMNN)to solve K-eigenvalue problems in neutron diffusion theory.GIPMNN follows the main idea of the inverse power method and determines the lowest eigenvalue using an iterative method.The PC-GIPMNN additionally enforces conservative interface conditions for the neutron flux.Meanwhile,Deep Ritz Method(DRM)directly solves the smallest eigenvalue by minimizing the eigenvalue in Rayleigh quotient form.A comprehensive study was conducted using GIPMNN,PC-GIPMNN,and DRM to solve problems of complex spatial geometry with variant material domains from the fleld of nuclear reactor physics.The methods were compared with the standard flnite element method.The applicability and accuracy of the methods are reported and indicate that PC-GIPMNN outperforms GIPMNN and DRM. 展开更多
关键词 neural network Reactor physics Neutron diffusion equation Eigenvalue problem Inverse power method
下载PDF
Secured Health Data Transmission Using Lagrange Interpolation and Artificial Neural Network
12
作者 S.Vidhya V.Kalaivani 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2673-2692,共20页
In recent decades,the cloud computing contributes a prominent role in health care sector as the patient health records are transferred and collected using cloud computing services.The doctors have switched to cloud co... In recent decades,the cloud computing contributes a prominent role in health care sector as the patient health records are transferred and collected using cloud computing services.The doctors have switched to cloud computing as it provides multiple advantageous measures including wide storage space and easy availability without any limitations.This necessitates the medical field to be redesigned by cloud technology to preserve information about patient’s critical diseases,electrocardiogram(ECG)reports,and payment details.The proposed work utilizes a hybrid cloud pattern to share Massachusetts Institute of Technology-Beth Israel Hospital(MIT-BIH)resources over the private and public cloud.The stored data are categorized as significant and non-significant by Artificial Neural Networks(ANN).The significant data undergoes encryption by Lagrange key management which automatically generates the key and stores it in the hidden layer.Upon receiving the request from a secondary user,the primary user verifies the authentication of the request and transmits the key via Gmail to the secondary user.Once the key matches the key in the hidden layer,the preserved information will be shared between the users.Due to the enhanced privacy preserving key generation,the proposed work prevents the tracking of keys by malicious users.The outcomes reveal that the introduced work provides improved success rate with reduced computational time. 展开更多
关键词 Cloud computing homomorphic encryption artificial neural network lagrange method CRYPTOGRAPHY
下载PDF
Estimation of Weibull Distribution Parameters for Wind Speed Characteristics Using Neural Network Algorithm
13
作者 Musaed Alrashidi 《Computers, Materials & Continua》 SCIE EI 2023年第4期1073-1088,共16页
Harvesting the power coming from the wind provides a green andenvironmentally friendly approach to producing electricity. To facilitate theongoing advancement in wind energy applications, deep knowledge aboutwind regi... Harvesting the power coming from the wind provides a green andenvironmentally friendly approach to producing electricity. To facilitate theongoing advancement in wind energy applications, deep knowledge aboutwind regime behavior is essential. Wind speed is typically characterized bya statistical distribution, and the two-parameters Weibull distribution hasshown its ability to represent wind speeds worldwide. Estimation of Weibullparameters, namely scale (c) and shape (k) parameters, is vital to describethe observed wind speeds data accurately. Yet, it is still a challenging task.Several numerical estimation approaches have been used by researchers toobtain c and k. However, utilizing such methods to characterize wind speedsmay lead to unsatisfactory accuracy. Therefore, this study aims to investigatethe performance of the metaheuristic optimization algorithm, Neural NetworkAlgorithm (NNA), in obtaining Weibull parameters and comparing itsperformance with five numerical estimation approaches. In carrying out thestudy, the wind characteristics of three sites in Saudi Arabia, namely HaferAl Batin, Riyadh, and Sharurah, are analyzed. Results exhibit that NNA hashigh accuracy fitting results compared to the numerical estimation methods.The NNA demonstrates its efficiency in optimizing Weibull parameters at allthe considered sites with correlations exceeding 98.54. 展开更多
关键词 Weibull probability density function wind energy numerical estimation method metaheuristic optimization algorithm neural network algorithm
下载PDF
The Complex System Modeling Method Based on Uniform Design and Neural Network 被引量:1
14
作者 Zhang Yong(Beijing Simulation Center, P.O.Box 142-23, Beijing 100854, P.R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第4期27-36,共10页
In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the model... In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively. 展开更多
关键词 Modeling method Uniform design neural network Complex system Simulation.
下载PDF
Hyperspectral Image Sharpening Based on Deep Convolutional Neural Network and Spatial-Spectral Spread Transform Models
15
作者 陆小辰 刘晓慧 +2 位作者 杨德政 赵萍 阳云龙 《Journal of Donghua University(English Edition)》 CAS 2023年第1期88-95,共8页
In order to improve the spatial resolution of hyperspectral(HS)image and minimize the spectral distortion,an HS and multispectral(MS)image fusion approach based on convolutional neural network(CNN)is proposed.The prop... In order to improve the spatial resolution of hyperspectral(HS)image and minimize the spectral distortion,an HS and multispectral(MS)image fusion approach based on convolutional neural network(CNN)is proposed.The proposed approach incorporates the linear spectral mixture model and spatial-spectral spread transform model into the learning phase of network,aiming to fully exploit the spatial-spectral information of HS and MS images,and improve the spectral fidelity of fusion images.Experiments on two real remote sensing data under different resolutions demonstrate that compared with some state-of-the-art HS and MS image fusion methods,the proposed approach achieves superior spectral fidelities and lower fusion errors. 展开更多
关键词 convolutional neural network(CNN) hyperspectral image image fusion multispectral image unmixing method
下载PDF
An Artificial Neural Network-Based Response Surface Method for Reliability Analyses of c-φ Slopes with Spatially Variable Soil 被引量:4
16
作者 舒苏荀 龚文惠 《China Ocean Engineering》 SCIE EI CSCD 2016年第1期113-122,共10页
This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube s... This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model;the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties;and finally,an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables.The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability.As a result,the obtained approximate function can be used as an alternative to the specific analysis process in c-φslope reliability analyses. 展开更多
关键词 slope reliability spatial variability artificial neural network Latin hypercube sampling random finite element method
下载PDF
Human and Machine Vision Based Indian Race Classification Using Modified-Convolutional Neural Network
17
作者 Vani A.Hiremani Kishore Kumar Senapati 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2603-2618,共16页
The inter-class face classification problem is more reasonable than the intra-class classification problem.To address this issue,we have carried out empirical research on classifying Indian people to their geographica... The inter-class face classification problem is more reasonable than the intra-class classification problem.To address this issue,we have carried out empirical research on classifying Indian people to their geographical regions.This work aimed to construct a computational classification model for classifying Indian regional face images acquired from south and east regions of India,referring to human vision.We have created an Automated Human Intelligence System(AHIS)to evaluate human visual capabilities.Analysis of AHIS response showed that face shape is a discriminative feature among the other facial features.We have developed a modified convolutional neural network to characterize the human vision response to improve face classification accuracy.The proposed model achieved mean F1 and Matthew Correlation Coefficient(MCC)of 0.92 and 0.84,respectively,on the validation set,outperforming the traditional Convolutional Neural Network(CNN).The CNN-Contoured Face(CNN-FC)model is developed to train contoured face images to investigate the influence of face shape.Finally,to cross-validate the accuracy of these models,the traditional CNN model is trained on the same dataset.With an accuracy of 92.98%,the Modified-CNN(M-CNN)model has demonstrated that the proposed method could facilitate the tangible impact in intra-classification problems.A novel Indian regional face dataset is created for supporting this supervised classification work,and it will be available to the research community. 展开更多
关键词 Data collection and preparation human vision analysis machine vision canny edge approximation method color local binary patterns convolutional neural network
下载PDF
Online Gradient Methods with a Punishing Term for Neural Networks 被引量:2
18
作者 孔俊 吴微 《Northeastern Mathematical Journal》 CSCD 2001年第3期371-378,共8页
Online gradient methods are widely used for training the weight of neural networks and for other engineering computations. In certain cases, the resulting weight may become very large, causing difficulties in the impl... Online gradient methods are widely used for training the weight of neural networks and for other engineering computations. In certain cases, the resulting weight may become very large, causing difficulties in the implementation of the network by electronic circuits. In this paper we introduce a punishing term into the error function of the training procedure to prevent this situation. The corresponding convergence of the iterative training procedure and the boundedness of the weight sequence are proved. A supporting numerical example is also provided. 展开更多
关键词 feedforward neural network online gradient method CONVERGENCE BOUNDEDNESS punishing term
下载PDF
A Study on the Convergence of Gradient Method with Momentum for Sigma-Pi-Sigma Neural Networks 被引量:1
19
作者 Xun Zhang Naimin Zhang 《Journal of Applied Mathematics and Physics》 2018年第4期880-887,共8页
In this paper, a gradient method with momentum for sigma-pi-sigma neural networks (SPSNN) is considered in order to accelerate the convergence of the learning procedure for the network weights. The momentum coefficien... In this paper, a gradient method with momentum for sigma-pi-sigma neural networks (SPSNN) is considered in order to accelerate the convergence of the learning procedure for the network weights. The momentum coefficient is chosen in an adaptive manner, and the corresponding weak convergence and strong convergence results are proved. 展开更多
关键词 Sigma-Pi-Sigma neural network MOMENTUM TERM GRADIENT method CONVERGENCE
下载PDF
基于CNN-Swin Transformer Network的LPI雷达信号识别
20
作者 苏琮智 杨承志 +2 位作者 邴雨晨 吴宏超 邓力洪 《现代雷达》 CSCD 北大核心 2024年第3期59-65,共7页
针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transforme... 针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transformer网络(CSTN),然后利用时频分析获取雷达信号的时频特征,对图像进行预处理后输入CSTN模型进行训练,由网络的底部到顶部不断提取图像更丰富的语义信息,最后通过Softmax分类器对六类不同调制方式信号进行分类识别。仿真实验表明:在SNR为-18 dB时,该方法对六类典型雷达信号的平均识别率达到了94.26%,证明了所提方法的可行性。 展开更多
关键词 低截获概率雷达 信号调制方式识别 Swin Transformer网络 卷积神经网络 时频分析
下载PDF
上一页 1 2 209 下一页 到第
使用帮助 返回顶部