Objective: To construct a recombinant plasmid containing the outer membrane protein 2 (Omp2) gene of Chlamydia trachomatis and express Omp2 in E.coli. Methods: The omp2 gene of C. trachomatis serovar D was cloned into...Objective: To construct a recombinant plasmid containing the outer membrane protein 2 (Omp2) gene of Chlamydia trachomatis and express Omp2 in E.coli. Methods: The omp2 gene of C. trachomatis serovar D was cloned into pQE30 vector following PCR amplification from genomic DNA. E. coli M15 transformants were induced to express the fusion protein by IPTG and the product was identified by SDS-PAGE and Western blot. Results: Confirmed by enzyme cleavage analysis and DNA sequencing, a correct recombinant plasmid pQE30/omp2 was constructed. The fusion protein from the transformants was approximately 60 kDa in size in SDS-PAGE analysis, which could specially react with anti-6 X His mouse monoclonal IgG antibodies. Conclusion: We successfully expressed Omp2 in E. coli M15, providing an efficient and simple system for assaying the immunological properties of Omp2.展开更多
AIM: To screen the immunogenic membrane proteins of Shigella Aexneri 2a 2457T. METHODS: The routine two-dimensional polyacrylamide gel electrophoresis (2-DE) and Western blotting were combined to screen immunogeni...AIM: To screen the immunogenic membrane proteins of Shigella Aexneri 2a 2457T. METHODS: The routine two-dimensional polyacrylamide gel electrophoresis (2-DE) and Western blotting were combined to screen immunogenic proteins of S. Aexneri 2a 2457T. Serum was gained from rabbits immunized with the same bacteria. Immunogenic spots were cut out from the polyacrylamide gel and digested by trypsin in-gel. Matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS) was performed to determine the molecular weight of peptides. Electrospray ionization (ESI-MS/MS) was performed to determine the sequences of the interesting peptides. RESULTS: A total of 20 spots were successfully identified from Coomassie brilliant blue stained gels representing 13 protein entries, 5 known antigens and 8 novel antigens. A hypothetical protein (YaeT) was detected, which might be a candidate target of vaccine. CONCLUSION: Membrane proteins of S. flexneri 2a 2457T were successfully observed by 2-DE. Several known and novel antigens were identified by mass spectrum.展开更多
ObjectiveTo study the effects of dendritic cells (DC) transfected with recombinant vaccinia virus encoding Epstein Barr virus (EBV) latent membrane protein 2A(LMP2A) gene,and to provide evidence for further investiga...ObjectiveTo study the effects of dendritic cells (DC) transfected with recombinant vaccinia virus encoding Epstein Barr virus (EBV) latent membrane protein 2A(LMP2A) gene,and to provide evidence for further investigation on the therapeutic vaccines against EBV associated malignancies. MethodsMature DC were transfected with EBV LMP2A recombinant vaccinia virus (rVV LMP2A). Before and after the transfection,the expression of surface antigens on mature DC including CD1a,CD83,CD40,CD80,HLA DR was measured by fluorescence activated cell sorter (FACS) and the function of DC to stimulate allogeneic T cells proliferation was measured by mixed leukocyte reactions (MLR). ResultsLMP2A protein was highly expressed (66.1 %) in DC after the transfection of rVV LMP2A. No significant changes in the primary surface antigens expression and in the MLR were detected during the transfection. Transfected DC still had strong potential in stimulating the proliferation of allogeneic T cells. ConclusionRecombinant vaccinia virus was an effective and non perturbing vector to mediate the transfection of LMP2A into DC. The functions of mature DC were not affected significantly by the transfection of Vac LMP2A. This study could provide evidence for the further immunotherapy of EBV associated malignancies,e.g. nasopharyngeal carcinoma (NPC).展开更多
Aim: To examine the expression and regulation of integral membrane protein 2b (Itm2b) in rat male reproductive tissues during sexual maturation and under different treatments by in situ hybridization. Methods: Tes...Aim: To examine the expression and regulation of integral membrane protein 2b (Itm2b) in rat male reproductive tissues during sexual maturation and under different treatments by in situ hybridization. Methods: Testis, epididymis, and vas deferens were collected on days 1-70 to examine Itm2b expression during sexual maturation. To further examine the regulation of Itm2b, adult rats underwent surgical castration and cryptorchidism. Ethylene dimethane sulfonate and busulfan treatments were carried out to test the regulation of Itm2b after destruction of Leydig cells and germ cells. Results: In testis, Itm2b expression was moderately detected in the adluminal area of seminiferous cords on days 1-10, and detected at a low level in the spermatogonia on days 20 and 30. The Itm2b level was markedly increased in Leydig cells from day 20 to day 70. In epididymis and vas deferens, Itm2b was detected from neonate to adults, and the signal gradually increased in accordance with sexual maturation. Itm2b expression was significantly downregulated in epididymis and vas deferens of castrated rats, and strongly stimulated when castrated rats were treated with testosterone. Cryptorchidism led to a significant decline of Itm2b expression in testis and caput epididymis. Itm2b expression in epididymis and vas deferens was significantly decreased after the Leydig ceils were destroyed by ethylene dimethane sulfonate. Busulfan treatment produced no obvious change in Itm2b expression in epididymis or vas deferens. Conelusion: Our data suggested that Itm2b expression is upregulated by testosterone and might play a role in rat male reproduction.展开更多
AIM: To investigate the role of the mitochondrial pathway in JTE-522-induced apoptosis and to investigate the relationship between cytochrome C release, caspase activity and loss of mitochondrial membrane potential (D...AIM: To investigate the role of the mitochondrial pathway in JTE-522-induced apoptosis and to investigate the relationship between cytochrome C release, caspase activity and loss of mitochondrial membrane potential (Deltapsim). METHODS: Cell culture, cell counting, ELISA assay, TUNEL, flow cytometry, Western blot and fluorometric assay were employed to investigate the effect of JTE-522 on cell proliferation and apoptosis in AGS cells and related molecular mechanism. RESULTS: JTE-522 inhibited the growth of AGS cells and induced the apoptosis. Caspases 8 and 9 were activated during apoptosis as judged by the appearance of cleavage products from procaspase and the caspase activities to cleave specific fluorogenic substrates. To elucidate whether the activation of caspases 8 and 9 was required for the apoptosis induction, we examined the effect of caspase-specific inhibitors on apoptosis. The results showed that caspase inhibitors significantly inhibited the apoptosis induced by JTE-522. In addition, the membrane translocation of Bax and cytosolic release of cytochrome C accompanying with the decrease of the uptake of Rhodamin 123, were detected at an early stage of apoptosis. Furthermore, Bax translocation, cytochrome C release, and caspase 9 activation were blocked by Z-VAD.fmk and Z-IETD-CHO. CONCLUSION: The present data indicate a crucial association between activation of caspases 8, 9, cytochrome C release, membrane translocation of Bax, loss of Deltapsim and JTE-522-induced apoptosis in AGS cells.展开更多
Objective To identify the sperm membrane proteins that are associated with antisperm antibody Methods Using antisperm antibody positive serum through unidimensional polyacrylamide gel electrophoresis and 2-dimensi...Objective To identify the sperm membrane proteins that are associated with antisperm antibody Methods Using antisperm antibody positive serum through unidimensional polyacrylamide gel electrophoresis and 2-dimensional gel electrophoresis followed by Western blot analysis to determine the molecular weights (MW) and isoelectric points (pI) of sperm membrane proteins that are associated with antisperm antibody. Results Eight kinds of MW with more than ten sperm membrane proteins can be recognized by antisperm antibody positive serum, of which the MWs and pI were 23 kD, 31 kD, 32 kD, 34 kD, 41 kD, 51 kD, 60 kD, 78 kD and 5.3, 5.5,5.7, 5.0, 5.3, 5.8, 6.0, 5.5~6.2, 4.6,5.1,5.5~5.8 respectively. The identification ratios of the sperm membrane proteins on 78 kD (60.7%), 60 kD (71.4%), 51 kD (14.9%) and 23 kD (14.29%) were higher. Conclusion The sperm membrane proteins with MW of 78 kD, 60 kD, 51 kD and 23 kD were associated with antisperm antibody and immunological infertility. Two- dimensional gel electrophoresis and Western blotting can precisely identify the sperm membrane proteins that are associated with antisperm antibody.展开更多
Coronavirus disease 2019(COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2(SARS-Co V-2), has spread rapidly worldwide with high rates of transmission and substantial mortality. To date, how...Coronavirus disease 2019(COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2(SARS-Co V-2), has spread rapidly worldwide with high rates of transmission and substantial mortality. To date, however, no effective treatments or enough vaccines for COVID-19 are available. The roles of angiotensin converting enzyme 2(ACE2) and spike protein in the treatment of COVID-19 are major areas of research. In this study, we explored the potential of ACE2 and spike protein as targets for the development of antiviral agents against SARS-Co V-2. We analyzed clinical data, genetic data, and receptor binding capability.Clinical data revealed that COVID-19 patients with comorbidities related to an abnormal reninangiotensin system exhibited more early symptoms and poorer prognoses. However, the relationship between ACE2 expression and COVID-19progression is still not clear. Furthermore, if ACE2 is not a good targetable protein, it would not be applicable across a wide range of populations. The spike-S1 receptor-binding domain that interacts with ACE2 showed various amino acid mutations based on sequence analysis. We identified two spike-S1 point mutations(V354 F and V470 A) by receptorligand docking and binding enzyme-linked immunosorbent assays. These variants enhanced the binding of the spike protein to ACE2 receptors and were potentially associated with increased infectivity. Importantly, the number of patients infected with the V354 F and V470 A mutants has increased with the development of the SARS-Co V-2 pandemic. These results suggest that ACE2 and spike-S1 are likely not ideal targets for the design of peptide drugs to treat COVID-19 in different populations.展开更多
The spike protein(S)of SARS-CoV-2 is responsible for viral attachment and entry,thus a major factor for host suscep-tibility,tissue tropism,virulence and pathogenicity.The S is divided with S1 and S2 region,and the S1...The spike protein(S)of SARS-CoV-2 is responsible for viral attachment and entry,thus a major factor for host suscep-tibility,tissue tropism,virulence and pathogenicity.The S is divided with S1 and S2 region,and the S1 contains the receptor-binding domain(RBD),while the S2 contains the hydrophobic fusion domain for the entry into the host cell.Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various c leavage sites.In this article,we review host proteases including furin,trypsin,transmembrane protease serine 2(TMPRSS2)and cathepsins in the activation of SARS-CoV-2 S.Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin.The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2,and the binding triggers further conformational changes and exposure of the S2'site to proteases such as type Il transmembrane serine proteases(TTPRs)including TMPRSS2.In the presence of TMPRSS2 on the target cells,SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane.In the absence of TMPRSS2,SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry.Additional host proteases involved in the cleavage of the S were discussed.This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2,and discussed the dual roles of such inhibitors in virus replication.展开更多
Objective Late 2019 witnessed the outbreak and widespread transmission of coronavirus disease 2019(COVID-19),a new,highly contagious disease caused by novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)....Objective Late 2019 witnessed the outbreak and widespread transmission of coronavirus disease 2019(COVID-19),a new,highly contagious disease caused by novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Consequently,considerable attention has been paid to the development of new diagnostic tools for the early detection of SARS-CoV-2.Methods In this study,a new poly-N-isopropylacrylamide microgel-based electrochemical sensor was explored to detect the SARS-CoV-2 spike protein(S protein)in human saliva.The microgel was composed of a copolymer of N-isopropylacrylamide and acrylic acid,and gold nanoparticles were encapsulated within the microgel through facile and economical fabrication.The electrochemical performance of the sensor was evaluated through differential pulse voltammetry.Results Under optimal experimental conditions,the linear range of the sensor was 10-13-10-9 mg/m L,whereas the detection limit was 9.55 fg/mL.Furthermore,the S protein was instilled in artificial saliva as the infected human saliva model,and the sensing platform showed satisfactory detection capability.Conclusion The sensing platform exhibited excellent specificity and sensitivity in detecting spike protein,indicating its potential application for the time-saving and inexpensive detection of SARS-CoV-2.展开更多
Objective: Bioabsorbable barrier membranes placed over alveolar ridge bone defects are routinely used in dental surgery to promote bone formation. Combining these osteoconductive membranes with osteoinductive Bone Mor...Objective: Bioabsorbable barrier membranes placed over alveolar ridge bone defects are routinely used in dental surgery to promote bone formation. Combining these osteoconductive membranes with osteoinductive Bone Morphogenetic Proteins could prove useful in long bone fracture treatment. The hypothesis was tested in a clinically relevant model of compromised healing. Methods: Four groups of 8 rabbits underwent unilateral mid-tibial osteotomy, excision of periosteum and endosteum, and plate fixation. One group had rhBMP-2 deposited between the bone ends and Membrane wrapped around the osteotomy, the second group had Membrane wrapped around the osteotomy, the third group had rhBMP-2 placed between the bone ends, and the fourth group received no additional treatment. Results: After 7 weeks, callus size and blood flow were significantly higher in the Membrane+rhBMP-2 group than in the rhBMP-2 treated group, but torsion to failure test showed no significant difference. Membrane treatment and no treatment led to non-union. Conclusion: Absorbable barrier membrane combined with rhBMP-2 enhances bone formation, but has no advantage to rhBMP-2 alone. Membrane alone wrapped around the osteotomy was unable to prevent non-union formation.展开更多
BACKGROUND Coronavirus disease 2019(COVID-19),caused by severe acute respiratory syndrome coronavirus-2,is a worldwide pandemic.Some COVID-19 patients develop severe acute respiratory distress syndrome and progress to...BACKGROUND Coronavirus disease 2019(COVID-19),caused by severe acute respiratory syndrome coronavirus-2,is a worldwide pandemic.Some COVID-19 patients develop severe acute respiratory distress syndrome and progress to respiratory failure.In such cases,extracorporeal membrane oxygenation(ECMO)treatment is a necessary life-saving procedure.CASE SUMMARY Two special COVID-19 cases—one full-term pregnant woman and one elderly(72-year-old)man—were treated by veno-venous(VV)-ECMO in the Second People’s Hospital of Zhongshan,Zhongshan City,Guangdong Province,China.Both patients had developed refractory hypoxemia shortly after hospital admission,despite conventional support,and were therefore managed by VV-ECMO.Although both experienced multiple ECMO-related complications on top of the COVID-19 disease,their conditions improved gradually.Both patients were weaned successfully from the ECMO therapy.At the time of writing of this report,the woman has recovered completely and been discharged from hospital to home;the man remains on mechanical ventilation,due to respiratory muscle weakness and suspected lung fibrosis.As ECMO itself is associated with various complications,it is very important to understand and treat these complications to achieve optimal outcome.CONCLUSION VV-ECMO can provide sufficient gas exchange for COVID-19 patients with acute respiratory distress syndrome.However,it is crucial to understand and treat ECMO-related complications.展开更多
Colorectal cancer (CRC) is an important health issue in Taiwan. There were over ten thousand newly diagnosed CRC patients each year. The outcome of late stage CRC still remains to be improved, and tumor markers are ex...Colorectal cancer (CRC) is an important health issue in Taiwan. There were over ten thousand newly diagnosed CRC patients each year. The outcome of late stage CRC still remains to be improved, and tumor markers are expected to improve CRC detection and management. From a colorectal cancer cell secretome database, we chose four proteins as candidates for clinical verification, including tumor-associated calcium signal transducer 2 (TROP2, TACSTD2), transmembrane 9 superfamily member 2 (TM9SF2), and tetraspanin-6 (TSPAN6), and tumor necrosis factor receptor superfamily member 16 (NGFR). Different groups of 30 CRC patients’ tissue samples collected from Chang Gung Memorial Hospital were analyzed by immunohistochemistry (IHC) for the four proteins, and the results were scored by pathologist. For all the four candidate proteins, marked differences of IHC score existed between tumor and adjacent non-tumor counterpart. However, there were only trends between higher protein expression levels and worse outcome. Three proteins (TROP2, TM9SF2 and NGFR) had trends between higher tissue expression and tumor stage or lymph node metastasis. Our study revealed that tissue expression of four proteins (TROP2, TM9SF2, TSPAN6, and NGFR) was markedly different between tumor and adjacent non-tumor counterparts. Overexpression of all these four proteins showed some trends with poorer survival.展开更多
COVID-19 is a global pandemic that has claimed millions of lives. This disease is caused by a coronavirus, SARS-CoV-2, which requires the binding of its spike protein to angiotensin-converting enzyme 2 (ACE2) for infe...COVID-19 is a global pandemic that has claimed millions of lives. This disease is caused by a coronavirus, SARS-CoV-2, which requires the binding of its spike protein to angiotensin-converting enzyme 2 (ACE2) for infection of the host cell. <em>Morinda citrifolia</em> (noni) fruit juice has antiviral activity that involves enhancement of immune system function. SARS-CoV-2 spike-ACE2 interaction experiments were carried out to further investigate the antiviral properties of noni juice and its major iridoids. Noni juice inhibited binding by approximately 69%. Scandoside was the most active of the three iridoids evaluated, reducing average spike protein-ACE2 interaction by 79.25%. The iridoids worked synergistically towards inhibiting spike protein binding when assayed together, improving activity by more than 22% above the expected level. But the modest activity of the most abundant iridoid, deacetylasperulosidic acid, indicates that other phytochemicals (<em>i.e</em>. scopoletin, quercetin, rutin and kaempferol) are also involved. Our results suggest that the presence of several biological active phytochemicals in noni juice enhances resistance to SARS-CoV-2 by interfering with its ability to bind ACE2. This is a new and significant anti-viral mechanism of noni juice that does not directly involve its immunomodulatory properties.展开更多
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had caused over 382 million cases and over 2.7 million deaths globally as of 23 March 2021. By ...The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had caused over 382 million cases and over 2.7 million deaths globally as of 23 March 2021. By that date, at least 10 SARS-CoV-2 variants had emerged. The transmissibility and lethality of the variants are higher than those of the Wuhan reference strain. Therefore, a universal vaccine for the reference strain and all variants (present and future) is indispensable. The coronavirus envelope (E) protein is an integral membrane protein crucial to the viral lifecycle and the pathogenesis of coronaviruses. The SARS-CoV-2 E protein has a postsynaptic density protein 95/Drosophila disc large tumor suppressor/zonula occludens-1 (PDZ) binding motif (PBM), and its interaction with PDZ-domain-2 of the human tight junction protein may interrupt the integrity of lung epithelium. Furthermore, the SARS-CoV-2 E protein itself is a homopentameric cation channel viroporin, which may be involved in viral release. This protein is thus a potential target for the development of a universal COVID-19 vaccine, because of its highly conserved amino acid sequence. The variant mutations occur mainly in the spike protein, and conservation of E protein remained in most Variants of Concern (VOC). Only one of the extant VOC have mutations in the E protein that P71L mutation occurs in the South African variant 501Y.V2 (B.1.351). If a vaccine is designed to target E protein, two scenarios are possible: 1) SARS-CoV-2 maintains a highly conserved E protein amino acid sequence, rendering the virus consistently or permanently susceptible to the vaccine;or 2) the E protein mutates and new variants evolve accordingly. In scenario 2, the tertiary structure and function of the E protein homopentameric cation channel viroporin, PBM, or other aspects affecting pathogenicity would be attenuated. Either scenario would thus ameliorate the pandemic. I therefore propose that a vaccine targeting the SARS-CoV-2 E protein would be effective against the Wuhan reference strain and all current and future SARS-CoV-2 variants. Efforts to create E protein-based vaccines are ongoing. Further research and clinical trials are needed to realize this universal COVID-19 vaccine.展开更多
The recent pandemic of coronavirus disease 2019(COVID-19)caused by SARS-CoV-2 has raised global health concerns.The viral 3-chymotrypsin-like cysteine protease(3CL^pro)enzyme controls coronavirus replication and is es...The recent pandemic of coronavirus disease 2019(COVID-19)caused by SARS-CoV-2 has raised global health concerns.The viral 3-chymotrypsin-like cysteine protease(3CL^pro)enzyme controls coronavirus replication and is essential for its life cycle.3CL^pro is a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus(SARS-CoV)and Middle East respiratory syndrome coronavirus(MERS-CoV).Recent studies revealed that the genome sequence of SARS-CoV-2 is very similar to that of SARS-CoV.Therefore,herein,we analysed the 3CL^pro sequence,constructed its 3D homology model,and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/traditional Chinese medicinal compounds.Our analyses revealed that the top nine hits might serve as potential anti-SARS-CoV-2 lead molecules for further optimisation and drug development process to combat COVID-19.展开更多
Trail, a tumor necrosis factor-related apoptosis-inducing ligand, is a novel potent endogenous activator of the cell death pathway through the activation of cell surface death receptors Trail-R1 and Trail-R2. Its role...Trail, a tumor necrosis factor-related apoptosis-inducing ligand, is a novel potent endogenous activator of the cell death pathway through the activation of cell surface death receptors Trail-R1 and Trail-R2. Its role, like FasL in activation-induced cell death (AICD), has been demonstrated in immune system. However the mechanism of Trail induced apoptosis remains unclear. In this report, the recombinant Trail protein was expressed and purified. The apoptosis-inducing activity and the regulation mechanism of recombinant Trail on Jurkat T cells were explored in vitro. Trypan blue exclusion assay demonstrated that the recombinant Trail protein actively killed Jurkat T cells in a dose-dependent manner. Trail-induced apoptosis in Jurkat T cells were remarkably reduced by Bcl-2 over expression in Bcl-2 gene transfected cells. Treatment with PMA (phorbol 12-myristate 13-acetate), a PKC activator, suppressed Trail-induced apoptosis in Jurkat T cells. The inhibition of apoptosis by PMA was abolished by pretreatment with Bis, a PKC inhibitor. Taken together, it was suggested that Bcl-2 over-expression and PMA activated PKC actively down-regulated the Trail-mediated apoptosis in Jurkat T cell.展开更多
The outbreak of coronavirus disease 2019 has seriously threatened human health.Rapidly and sensitively detecting SARSCoV-2 viruses can help control the spread of viruses.However,it is an arduous challenge to apply sem...The outbreak of coronavirus disease 2019 has seriously threatened human health.Rapidly and sensitively detecting SARSCoV-2 viruses can help control the spread of viruses.However,it is an arduous challenge to apply semiconductor-based substrates for virus SERS detection due to their poor sensitivity.Therefore,it is worthwhile to search novel semiconductor-based substrates with excellent SERS sensitivity.Herein we report,for the first time,Nb2C and Ta2C MXenes exhibit a remarkable SERS enhancement,which is synergistically enabled by the charge transfer resonance enhancement and electromagnetic enhancement.Their SERS sensitivity is optimized to 3.0×10^6 and 1.4×10^6 under the optimal resonance excitation wavelength of 532 nm.Additionally,remarkable SERS sensitivity endows Ta2C MXenes with capability to sensitively detect and accurately identify the SARS-CoV-2 spike protein.Moreover,its detection limit is as low as 5×10^−9 M,which is beneficial to achieve real-time monitoring and early warning of novel coronavirus.This research not only provides helpful theoretical guidance for exploring other novel SERS-active semiconductor-based materials but also provides a potential candidate for the practical applications of SERS technology.展开更多
基金This work was supported in part by grants from the Department of Science and Technology of Hunan Province (No. 01SSY2008-6) the Department of Health of Hunan Province (No. B2003-078).
文摘Objective: To construct a recombinant plasmid containing the outer membrane protein 2 (Omp2) gene of Chlamydia trachomatis and express Omp2 in E.coli. Methods: The omp2 gene of C. trachomatis serovar D was cloned into pQE30 vector following PCR amplification from genomic DNA. E. coli M15 transformants were induced to express the fusion protein by IPTG and the product was identified by SDS-PAGE and Western blot. Results: Confirmed by enzyme cleavage analysis and DNA sequencing, a correct recombinant plasmid pQE30/omp2 was constructed. The fusion protein from the transformants was approximately 60 kDa in size in SDS-PAGE analysis, which could specially react with anti-6 X His mouse monoclonal IgG antibodies. Conclusion: We successfully expressed Omp2 in E. coli M15, providing an efficient and simple system for assaying the immunological properties of Omp2.
基金Supported by the Capital "248" Key Innovation Project, No. H010210360119, State Basic Research Development Program of China No. 973 Program, G1999054103 and 2005CB22904 and National Natural Science Foundation of China No. 30470101
文摘AIM: To screen the immunogenic membrane proteins of Shigella Aexneri 2a 2457T. METHODS: The routine two-dimensional polyacrylamide gel electrophoresis (2-DE) and Western blotting were combined to screen immunogenic proteins of S. Aexneri 2a 2457T. Serum was gained from rabbits immunized with the same bacteria. Immunogenic spots were cut out from the polyacrylamide gel and digested by trypsin in-gel. Matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS) was performed to determine the molecular weight of peptides. Electrospray ionization (ESI-MS/MS) was performed to determine the sequences of the interesting peptides. RESULTS: A total of 20 spots were successfully identified from Coomassie brilliant blue stained gels representing 13 protein entries, 5 known antigens and 8 novel antigens. A hypothetical protein (YaeT) was detected, which might be a candidate target of vaccine. CONCLUSION: Membrane proteins of S. flexneri 2a 2457T were successfully observed by 2-DE. Several known and novel antigens were identified by mass spectrum.
基金This paper is supported by grant from the National Natural Science Foundation of China(No.30 1 70 880 )
文摘ObjectiveTo study the effects of dendritic cells (DC) transfected with recombinant vaccinia virus encoding Epstein Barr virus (EBV) latent membrane protein 2A(LMP2A) gene,and to provide evidence for further investigation on the therapeutic vaccines against EBV associated malignancies. MethodsMature DC were transfected with EBV LMP2A recombinant vaccinia virus (rVV LMP2A). Before and after the transfection,the expression of surface antigens on mature DC including CD1a,CD83,CD40,CD80,HLA DR was measured by fluorescence activated cell sorter (FACS) and the function of DC to stimulate allogeneic T cells proliferation was measured by mixed leukocyte reactions (MLR). ResultsLMP2A protein was highly expressed (66.1 %) in DC after the transfection of rVV LMP2A. No significant changes in the primary surface antigens expression and in the MLR were detected during the transfection. Transfected DC still had strong potential in stimulating the proliferation of allogeneic T cells. ConclusionRecombinant vaccinia virus was an effective and non perturbing vector to mediate the transfection of LMP2A into DC. The functions of mature DC were not affected significantly by the transfection of Vac LMP2A. This study could provide evidence for the further immunotherapy of EBV associated malignancies,e.g. nasopharyngeal carcinoma (NPC).
基金Acknowledgment This work was supported by grants from National Basic Research Program of China (No. 2006CB504005 and No. 2006CB944009) and National Natural Science Foundation of China (No. 30330060 and No. 30570198).
文摘Aim: To examine the expression and regulation of integral membrane protein 2b (Itm2b) in rat male reproductive tissues during sexual maturation and under different treatments by in situ hybridization. Methods: Testis, epididymis, and vas deferens were collected on days 1-70 to examine Itm2b expression during sexual maturation. To further examine the regulation of Itm2b, adult rats underwent surgical castration and cryptorchidism. Ethylene dimethane sulfonate and busulfan treatments were carried out to test the regulation of Itm2b after destruction of Leydig cells and germ cells. Results: In testis, Itm2b expression was moderately detected in the adluminal area of seminiferous cords on days 1-10, and detected at a low level in the spermatogonia on days 20 and 30. The Itm2b level was markedly increased in Leydig cells from day 20 to day 70. In epididymis and vas deferens, Itm2b was detected from neonate to adults, and the signal gradually increased in accordance with sexual maturation. Itm2b expression was significantly downregulated in epididymis and vas deferens of castrated rats, and strongly stimulated when castrated rats were treated with testosterone. Cryptorchidism led to a significant decline of Itm2b expression in testis and caput epididymis. Itm2b expression in epididymis and vas deferens was significantly decreased after the Leydig ceils were destroyed by ethylene dimethane sulfonate. Busulfan treatment produced no obvious change in Itm2b expression in epididymis or vas deferens. Conelusion: Our data suggested that Itm2b expression is upregulated by testosterone and might play a role in rat male reproduction.
基金National Natural Science Foundation of China,No.39770300,30070873the Overseas Chinese Affairs Office of the State Council Foundation,No.98-33
文摘AIM: To investigate the role of the mitochondrial pathway in JTE-522-induced apoptosis and to investigate the relationship between cytochrome C release, caspase activity and loss of mitochondrial membrane potential (Deltapsim). METHODS: Cell culture, cell counting, ELISA assay, TUNEL, flow cytometry, Western blot and fluorometric assay were employed to investigate the effect of JTE-522 on cell proliferation and apoptosis in AGS cells and related molecular mechanism. RESULTS: JTE-522 inhibited the growth of AGS cells and induced the apoptosis. Caspases 8 and 9 were activated during apoptosis as judged by the appearance of cleavage products from procaspase and the caspase activities to cleave specific fluorogenic substrates. To elucidate whether the activation of caspases 8 and 9 was required for the apoptosis induction, we examined the effect of caspase-specific inhibitors on apoptosis. The results showed that caspase inhibitors significantly inhibited the apoptosis induced by JTE-522. In addition, the membrane translocation of Bax and cytosolic release of cytochrome C accompanying with the decrease of the uptake of Rhodamin 123, were detected at an early stage of apoptosis. Furthermore, Bax translocation, cytochrome C release, and caspase 9 activation were blocked by Z-VAD.fmk and Z-IETD-CHO. CONCLUSION: The present data indicate a crucial association between activation of caspases 8, 9, cytochrome C release, membrane translocation of Bax, loss of Deltapsim and JTE-522-induced apoptosis in AGS cells.
文摘Objective To identify the sperm membrane proteins that are associated with antisperm antibody Methods Using antisperm antibody positive serum through unidimensional polyacrylamide gel electrophoresis and 2-dimensional gel electrophoresis followed by Western blot analysis to determine the molecular weights (MW) and isoelectric points (pI) of sperm membrane proteins that are associated with antisperm antibody. Results Eight kinds of MW with more than ten sperm membrane proteins can be recognized by antisperm antibody positive serum, of which the MWs and pI were 23 kD, 31 kD, 32 kD, 34 kD, 41 kD, 51 kD, 60 kD, 78 kD and 5.3, 5.5,5.7, 5.0, 5.3, 5.8, 6.0, 5.5~6.2, 4.6,5.1,5.5~5.8 respectively. The identification ratios of the sperm membrane proteins on 78 kD (60.7%), 60 kD (71.4%), 51 kD (14.9%) and 23 kD (14.29%) were higher. Conclusion The sperm membrane proteins with MW of 78 kD, 60 kD, 51 kD and 23 kD were associated with antisperm antibody and immunological infertility. Two- dimensional gel electrophoresis and Western blotting can precisely identify the sperm membrane proteins that are associated with antisperm antibody.
基金supported by the National Key Research and Development Program of China (2018YFD0900602)National Natural Science Foundation of China (31970388, 31701234)+3 种基金Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)Natural Science Foundation of the Jiangsu Higher Education Institutions (17KJB180006)Natural Science Foundation from Jiangsu Province (BK20160043, BK20151546, 15KJA180004and BK20171035)Jiangsu Distinguished Professor Funding。
文摘Coronavirus disease 2019(COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2(SARS-Co V-2), has spread rapidly worldwide with high rates of transmission and substantial mortality. To date, however, no effective treatments or enough vaccines for COVID-19 are available. The roles of angiotensin converting enzyme 2(ACE2) and spike protein in the treatment of COVID-19 are major areas of research. In this study, we explored the potential of ACE2 and spike protein as targets for the development of antiviral agents against SARS-Co V-2. We analyzed clinical data, genetic data, and receptor binding capability.Clinical data revealed that COVID-19 patients with comorbidities related to an abnormal reninangiotensin system exhibited more early symptoms and poorer prognoses. However, the relationship between ACE2 expression and COVID-19progression is still not clear. Furthermore, if ACE2 is not a good targetable protein, it would not be applicable across a wide range of populations. The spike-S1 receptor-binding domain that interacts with ACE2 showed various amino acid mutations based on sequence analysis. We identified two spike-S1 point mutations(V354 F and V470 A) by receptorligand docking and binding enzyme-linked immunosorbent assays. These variants enhanced the binding of the spike protein to ACE2 receptors and were potentially associated with increased infectivity. Importantly, the number of patients infected with the V354 F and V470 A mutants has increased with the development of the SARS-Co V-2 pandemic. These results suggest that ACE2 and spike-S1 are likely not ideal targets for the design of peptide drugs to treat COVID-19 in different populations.
基金National Institutes of Health(NIH)(grants R01 A/130092 and Al161085).
文摘The spike protein(S)of SARS-CoV-2 is responsible for viral attachment and entry,thus a major factor for host suscep-tibility,tissue tropism,virulence and pathogenicity.The S is divided with S1 and S2 region,and the S1 contains the receptor-binding domain(RBD),while the S2 contains the hydrophobic fusion domain for the entry into the host cell.Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various c leavage sites.In this article,we review host proteases including furin,trypsin,transmembrane protease serine 2(TMPRSS2)and cathepsins in the activation of SARS-CoV-2 S.Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin.The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2,and the binding triggers further conformational changes and exposure of the S2'site to proteases such as type Il transmembrane serine proteases(TTPRs)including TMPRSS2.In the presence of TMPRSS2 on the target cells,SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane.In the absence of TMPRSS2,SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry.Additional host proteases involved in the cleavage of the S were discussed.This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2,and discussed the dual roles of such inhibitors in virus replication.
基金supported by Key Research and Development Project of Hubei Province[Number 2020BCB022]Opening Fund of State Key Laboratory of Virology of Wuhan University[grant number 2022KF002]+2 种基金Royal Society International Exchanges Scheme[IECNSFC201116]The Academy of Medical Sciences/Wellcome Trust[Springboard grantSBF007100054]。
文摘Objective Late 2019 witnessed the outbreak and widespread transmission of coronavirus disease 2019(COVID-19),a new,highly contagious disease caused by novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Consequently,considerable attention has been paid to the development of new diagnostic tools for the early detection of SARS-CoV-2.Methods In this study,a new poly-N-isopropylacrylamide microgel-based electrochemical sensor was explored to detect the SARS-CoV-2 spike protein(S protein)in human saliva.The microgel was composed of a copolymer of N-isopropylacrylamide and acrylic acid,and gold nanoparticles were encapsulated within the microgel through facile and economical fabrication.The electrochemical performance of the sensor was evaluated through differential pulse voltammetry.Results Under optimal experimental conditions,the linear range of the sensor was 10-13-10-9 mg/m L,whereas the detection limit was 9.55 fg/mL.Furthermore,the S protein was instilled in artificial saliva as the infected human saliva model,and the sensing platform showed satisfactory detection capability.Conclusion The sensing platform exhibited excellent specificity and sensitivity in detecting spike protein,indicating its potential application for the time-saving and inexpensive detection of SARS-CoV-2.
文摘Objective: Bioabsorbable barrier membranes placed over alveolar ridge bone defects are routinely used in dental surgery to promote bone formation. Combining these osteoconductive membranes with osteoinductive Bone Morphogenetic Proteins could prove useful in long bone fracture treatment. The hypothesis was tested in a clinically relevant model of compromised healing. Methods: Four groups of 8 rabbits underwent unilateral mid-tibial osteotomy, excision of periosteum and endosteum, and plate fixation. One group had rhBMP-2 deposited between the bone ends and Membrane wrapped around the osteotomy, the second group had Membrane wrapped around the osteotomy, the third group had rhBMP-2 placed between the bone ends, and the fourth group received no additional treatment. Results: After 7 weeks, callus size and blood flow were significantly higher in the Membrane+rhBMP-2 group than in the rhBMP-2 treated group, but torsion to failure test showed no significant difference. Membrane treatment and no treatment led to non-union. Conclusion: Absorbable barrier membrane combined with rhBMP-2 enhances bone formation, but has no advantage to rhBMP-2 alone. Membrane alone wrapped around the osteotomy was unable to prevent non-union formation.
基金Zhongshan City Social Welfare Project,No.2020B1002.
文摘BACKGROUND Coronavirus disease 2019(COVID-19),caused by severe acute respiratory syndrome coronavirus-2,is a worldwide pandemic.Some COVID-19 patients develop severe acute respiratory distress syndrome and progress to respiratory failure.In such cases,extracorporeal membrane oxygenation(ECMO)treatment is a necessary life-saving procedure.CASE SUMMARY Two special COVID-19 cases—one full-term pregnant woman and one elderly(72-year-old)man—were treated by veno-venous(VV)-ECMO in the Second People’s Hospital of Zhongshan,Zhongshan City,Guangdong Province,China.Both patients had developed refractory hypoxemia shortly after hospital admission,despite conventional support,and were therefore managed by VV-ECMO.Although both experienced multiple ECMO-related complications on top of the COVID-19 disease,their conditions improved gradually.Both patients were weaned successfully from the ECMO therapy.At the time of writing of this report,the woman has recovered completely and been discharged from hospital to home;the man remains on mechanical ventilation,due to respiratory muscle weakness and suspected lung fibrosis.As ECMO itself is associated with various complications,it is very important to understand and treat these complications to achieve optimal outcome.CONCLUSION VV-ECMO can provide sufficient gas exchange for COVID-19 patients with acute respiratory distress syndrome.However,it is crucial to understand and treat ECMO-related complications.
文摘Colorectal cancer (CRC) is an important health issue in Taiwan. There were over ten thousand newly diagnosed CRC patients each year. The outcome of late stage CRC still remains to be improved, and tumor markers are expected to improve CRC detection and management. From a colorectal cancer cell secretome database, we chose four proteins as candidates for clinical verification, including tumor-associated calcium signal transducer 2 (TROP2, TACSTD2), transmembrane 9 superfamily member 2 (TM9SF2), and tetraspanin-6 (TSPAN6), and tumor necrosis factor receptor superfamily member 16 (NGFR). Different groups of 30 CRC patients’ tissue samples collected from Chang Gung Memorial Hospital were analyzed by immunohistochemistry (IHC) for the four proteins, and the results were scored by pathologist. For all the four candidate proteins, marked differences of IHC score existed between tumor and adjacent non-tumor counterpart. However, there were only trends between higher protein expression levels and worse outcome. Three proteins (TROP2, TM9SF2 and NGFR) had trends between higher tissue expression and tumor stage or lymph node metastasis. Our study revealed that tissue expression of four proteins (TROP2, TM9SF2, TSPAN6, and NGFR) was markedly different between tumor and adjacent non-tumor counterparts. Overexpression of all these four proteins showed some trends with poorer survival.
文摘COVID-19 is a global pandemic that has claimed millions of lives. This disease is caused by a coronavirus, SARS-CoV-2, which requires the binding of its spike protein to angiotensin-converting enzyme 2 (ACE2) for infection of the host cell. <em>Morinda citrifolia</em> (noni) fruit juice has antiviral activity that involves enhancement of immune system function. SARS-CoV-2 spike-ACE2 interaction experiments were carried out to further investigate the antiviral properties of noni juice and its major iridoids. Noni juice inhibited binding by approximately 69%. Scandoside was the most active of the three iridoids evaluated, reducing average spike protein-ACE2 interaction by 79.25%. The iridoids worked synergistically towards inhibiting spike protein binding when assayed together, improving activity by more than 22% above the expected level. But the modest activity of the most abundant iridoid, deacetylasperulosidic acid, indicates that other phytochemicals (<em>i.e</em>. scopoletin, quercetin, rutin and kaempferol) are also involved. Our results suggest that the presence of several biological active phytochemicals in noni juice enhances resistance to SARS-CoV-2 by interfering with its ability to bind ACE2. This is a new and significant anti-viral mechanism of noni juice that does not directly involve its immunomodulatory properties.
文摘The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had caused over 382 million cases and over 2.7 million deaths globally as of 23 March 2021. By that date, at least 10 SARS-CoV-2 variants had emerged. The transmissibility and lethality of the variants are higher than those of the Wuhan reference strain. Therefore, a universal vaccine for the reference strain and all variants (present and future) is indispensable. The coronavirus envelope (E) protein is an integral membrane protein crucial to the viral lifecycle and the pathogenesis of coronaviruses. The SARS-CoV-2 E protein has a postsynaptic density protein 95/Drosophila disc large tumor suppressor/zonula occludens-1 (PDZ) binding motif (PBM), and its interaction with PDZ-domain-2 of the human tight junction protein may interrupt the integrity of lung epithelium. Furthermore, the SARS-CoV-2 E protein itself is a homopentameric cation channel viroporin, which may be involved in viral release. This protein is thus a potential target for the development of a universal COVID-19 vaccine, because of its highly conserved amino acid sequence. The variant mutations occur mainly in the spike protein, and conservation of E protein remained in most Variants of Concern (VOC). Only one of the extant VOC have mutations in the E protein that P71L mutation occurs in the South African variant 501Y.V2 (B.1.351). If a vaccine is designed to target E protein, two scenarios are possible: 1) SARS-CoV-2 maintains a highly conserved E protein amino acid sequence, rendering the virus consistently or permanently susceptible to the vaccine;or 2) the E protein mutates and new variants evolve accordingly. In scenario 2, the tertiary structure and function of the E protein homopentameric cation channel viroporin, PBM, or other aspects affecting pathogenicity would be attenuated. Either scenario would thus ameliorate the pandemic. I therefore propose that a vaccine targeting the SARS-CoV-2 E protein would be effective against the Wuhan reference strain and all current and future SARS-CoV-2 variants. Efforts to create E protein-based vaccines are ongoing. Further research and clinical trials are needed to realize this universal COVID-19 vaccine.
基金This work was supported by the National Key Research and Development Program of China(2020YFC0845600)the Hubei Provincial Natural Science Foundation of China(2019CFA014)+1 种基金the Starting Research Grant for High-level Talents from Guangxi University,Nanning,ChinaPostdoctoral Research Platform Grant of Guangxi University,Nanning,China.
文摘The recent pandemic of coronavirus disease 2019(COVID-19)caused by SARS-CoV-2 has raised global health concerns.The viral 3-chymotrypsin-like cysteine protease(3CL^pro)enzyme controls coronavirus replication and is essential for its life cycle.3CL^pro is a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus(SARS-CoV)and Middle East respiratory syndrome coronavirus(MERS-CoV).Recent studies revealed that the genome sequence of SARS-CoV-2 is very similar to that of SARS-CoV.Therefore,herein,we analysed the 3CL^pro sequence,constructed its 3D homology model,and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/traditional Chinese medicinal compounds.Our analyses revealed that the top nine hits might serve as potential anti-SARS-CoV-2 lead molecules for further optimisation and drug development process to combat COVID-19.
基金Major State BasicResearch (973) Program of China, (G1999053905).
文摘Trail, a tumor necrosis factor-related apoptosis-inducing ligand, is a novel potent endogenous activator of the cell death pathway through the activation of cell surface death receptors Trail-R1 and Trail-R2. Its role, like FasL in activation-induced cell death (AICD), has been demonstrated in immune system. However the mechanism of Trail induced apoptosis remains unclear. In this report, the recombinant Trail protein was expressed and purified. The apoptosis-inducing activity and the regulation mechanism of recombinant Trail on Jurkat T cells were explored in vitro. Trypan blue exclusion assay demonstrated that the recombinant Trail protein actively killed Jurkat T cells in a dose-dependent manner. Trail-induced apoptosis in Jurkat T cells were remarkably reduced by Bcl-2 over expression in Bcl-2 gene transfected cells. Treatment with PMA (phorbol 12-myristate 13-acetate), a PKC activator, suppressed Trail-induced apoptosis in Jurkat T cells. The inhibition of apoptosis by PMA was abolished by pretreatment with Bis, a PKC inhibitor. Taken together, it was suggested that Bcl-2 over-expression and PMA activated PKC actively down-regulated the Trail-mediated apoptosis in Jurkat T cell.
基金The authors gratefully acknowledge the finical support of the National Key Research and Development Project(No.2017YFB0310600)this work is also supported by Shanghai International Science and Technology Cooperation Fund(Nos.17520711700 and 18520744200).
文摘The outbreak of coronavirus disease 2019 has seriously threatened human health.Rapidly and sensitively detecting SARSCoV-2 viruses can help control the spread of viruses.However,it is an arduous challenge to apply semiconductor-based substrates for virus SERS detection due to their poor sensitivity.Therefore,it is worthwhile to search novel semiconductor-based substrates with excellent SERS sensitivity.Herein we report,for the first time,Nb2C and Ta2C MXenes exhibit a remarkable SERS enhancement,which is synergistically enabled by the charge transfer resonance enhancement and electromagnetic enhancement.Their SERS sensitivity is optimized to 3.0×10^6 and 1.4×10^6 under the optimal resonance excitation wavelength of 532 nm.Additionally,remarkable SERS sensitivity endows Ta2C MXenes with capability to sensitively detect and accurately identify the SARS-CoV-2 spike protein.Moreover,its detection limit is as low as 5×10^−9 M,which is beneficial to achieve real-time monitoring and early warning of novel coronavirus.This research not only provides helpful theoretical guidance for exploring other novel SERS-active semiconductor-based materials but also provides a potential candidate for the practical applications of SERS technology.