The synthetic path of a catalyst determines its morphology,species,and performance,and in-situ monitoring the catalyst formation process is fascinating and challenging.Herein,a newly developed synchrotron radiation sm...The synthetic path of a catalyst determines its morphology,species,and performance,and in-situ monitoring the catalyst formation process is fascinating and challenging.Herein,a newly developed synchrotron radiation smallangle X-ray scattering/X-ray diffraction/X-ray absorption fine structure(SAXS/XRD/XAFS)combined technique was used to in-situ monitor the isothermal-isobaric synthesis process of CO_(2)-assisted(BiO)_(2)CO_(3)(BOC)photocatalyst,and the atomic near-neighbor structure,crystalline structure and nanoscale particle size evolution with reaction time were simultaneously captured.The results show that both polyvinyl pyrrolidone and CO_(2)formed uniformly-distributed nano-sized scatterers in the Bi-based precursor solution,presenting short-range ordered structures to a certain extent.The as-prepared BOC catalytic particles underwent the evolution process of initial Bi(OH)3 precipitate,early-stage formed KBiO_(2)molecules,intermediate amorphous(BiO)4CO3(OH)2 nanoparticles,and finally crystallized flower-like BOC particles self-assembled by nanosheets.The flower-like BOC particles,Bi/BOC composite,and Bi nanospheres were further prepared with different synthesis paths.Flower-like BOC particles showed the best photocatalytic degradation performance of RhB.Scavenger experiment and theoretical calculation revealed the photocatalytic mechanisms of BOC.This work has implications for path-dependent synthesis of other catalysts.展开更多
基金supported by the National Natural Science Foundation of China(12305372)the National Key R&D Program(2017YFA0403001 and 2022YFA1603802)of China。
文摘The synthetic path of a catalyst determines its morphology,species,and performance,and in-situ monitoring the catalyst formation process is fascinating and challenging.Herein,a newly developed synchrotron radiation smallangle X-ray scattering/X-ray diffraction/X-ray absorption fine structure(SAXS/XRD/XAFS)combined technique was used to in-situ monitor the isothermal-isobaric synthesis process of CO_(2)-assisted(BiO)_(2)CO_(3)(BOC)photocatalyst,and the atomic near-neighbor structure,crystalline structure and nanoscale particle size evolution with reaction time were simultaneously captured.The results show that both polyvinyl pyrrolidone and CO_(2)formed uniformly-distributed nano-sized scatterers in the Bi-based precursor solution,presenting short-range ordered structures to a certain extent.The as-prepared BOC catalytic particles underwent the evolution process of initial Bi(OH)3 precipitate,early-stage formed KBiO_(2)molecules,intermediate amorphous(BiO)4CO3(OH)2 nanoparticles,and finally crystallized flower-like BOC particles self-assembled by nanosheets.The flower-like BOC particles,Bi/BOC composite,and Bi nanospheres were further prepared with different synthesis paths.Flower-like BOC particles showed the best photocatalytic degradation performance of RhB.Scavenger experiment and theoretical calculation revealed the photocatalytic mechanisms of BOC.This work has implications for path-dependent synthesis of other catalysts.