期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于符号表示的可度量shapelets提取的时序分类研究
1
作者 王礼勤 万源 罗颖 《计算机科学》 CSCD 北大核心 2024年第8期106-116,共11页
在时序分类问题中,基于符号表示的shapelets提取方法具有良好的分类精度和分类效率,但对符号进行质量度量的过程,如计算TFIDF分数,耗时较长且计算量大,导致分类效率较低。此外,提取的shapelets候选数量仍然较多,判别力有待提高。针对这... 在时序分类问题中,基于符号表示的shapelets提取方法具有良好的分类精度和分类效率,但对符号进行质量度量的过程,如计算TFIDF分数,耗时较长且计算量大,导致分类效率较低。此外,提取的shapelets候选数量仍然较多,判别力有待提高。针对这些问题,本文提出了一种基于符号表示的可度量shapelets提取方法,该方法包含时间序列数据预处理、确定shapelets候选集和学习shapelets 3个阶段,可以快速得到高质量shapelets。在数据预处理阶段,将时间序列转化为符号聚合近似(SAX)表示以降低原始时间序列的维度。在确定shapelets候选集阶段,利用Bloom过滤器过滤重复的SAX词,并将过滤后的SAX词存储在哈希表中进行质量度量。随后,对SAX词的相似性进行判别,基于相似性和覆盖度等概念确定最终的shapelets候选集。在学习shapelets阶段,采用logistic回归模型学得真正的shapelets用于时序分类。在32个数据集上进行了大量实验,实验结果表明,所提方法的平均分类精度和平均分类效率均排名第二。与现有的基于shapelets的时序分类方法相比,该方法可以在保证精度的同时提高分类效率,并且具有良好的可解释性。 展开更多
关键词 时间序列分类 shapelet sax表示 BLOOM过滤器 LOGISTIC回归
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部