Fluid catalytic cracking(FCC)is still a key process in the modern refining industry,in which nickel contamination of the FCC catalyst can significantly increase the dry gas and coke yields and thus seriously affect th...Fluid catalytic cracking(FCC)is still a key process in the modern refining industry,in which nickel contamination of the FCC catalyst can significantly increase the dry gas and coke yields and thus seriously affect the stability of the FCC unit.Therefore,in this work,B_(2)O_(3)-modified SBA-15 molecular sieves(B_(2)O_(3)/SBA-15)with different B_(2)O_(3) contents were prepared,characterized,and further used as matrix component in the preparation of Ni-tolerant FCC catalyst.The characterization results indicated that the B_(2)O_(3)/SBA-15 samples possessed excellent Ni passivation ability and kept the characteristic structure of the parent SBA-15 such as highly ordered mesopores,large surface area,and high pore volume,which enabled the B_(2)O_(3)/SBA-15 sample to greatly improve the Ni tolerance of the prepared FCC catalyst.The heavy oil catalytic cracking tests indicated that,under the same Ni contamination conditions,the dry gas,coke,and heavy oil yields of the FCC catalyst containing B_(2)O_(3)/SBA-15 decreased by 0.92%,1.65%,and 1.26%,respectively,compared with those of conventional FCC catalyst,while the total liquid yield increased by 3.83%.展开更多
基金National Natural Science Foundation of China(grant number:21902008)Doctor Research Program of Shandong University of Technology(No.4041/420117).
文摘Fluid catalytic cracking(FCC)is still a key process in the modern refining industry,in which nickel contamination of the FCC catalyst can significantly increase the dry gas and coke yields and thus seriously affect the stability of the FCC unit.Therefore,in this work,B_(2)O_(3)-modified SBA-15 molecular sieves(B_(2)O_(3)/SBA-15)with different B_(2)O_(3) contents were prepared,characterized,and further used as matrix component in the preparation of Ni-tolerant FCC catalyst.The characterization results indicated that the B_(2)O_(3)/SBA-15 samples possessed excellent Ni passivation ability and kept the characteristic structure of the parent SBA-15 such as highly ordered mesopores,large surface area,and high pore volume,which enabled the B_(2)O_(3)/SBA-15 sample to greatly improve the Ni tolerance of the prepared FCC catalyst.The heavy oil catalytic cracking tests indicated that,under the same Ni contamination conditions,the dry gas,coke,and heavy oil yields of the FCC catalyst containing B_(2)O_(3)/SBA-15 decreased by 0.92%,1.65%,and 1.26%,respectively,compared with those of conventional FCC catalyst,while the total liquid yield increased by 3.83%.