Recently,cyclic(alkyl)(amino)carbenes(CAACs)have been widely used as ligands to enhance the catalytic reactivity of center metal,but the problem of recycling this expensive ligand remains to be solved.In this work,the...Recently,cyclic(alkyl)(amino)carbenes(CAACs)have been widely used as ligands to enhance the catalytic reactivity of center metal,but the problem of recycling this expensive ligand remains to be solved.In this work,the heterogeneous SBA-15-CAAC-Ir catalyst was prepared by a covalent attachment method.and using SBA-15 as the carrier.It shows high reactivity for the hydrogenation of CO_(2) to formate.After immobilization,the ordered mesoporous structure and the overall rod-like morphology of the original SBA-15 have been preserved very well.Using SBA-15-CAAC-Ir as catalyst,up to 21050 TON can be obtained at 60℃.In addition,the catalyst can be separated easily by centrifugation,and the catalytic activity of SBA-15-CAAC-Ir can still remain very high after multiple cycles.展开更多
A new method for the preparation of SBA-15-supported palladium catalyst for Heck reaction in supercritical carbon dioxide was presented.The newly formed SBA-15-supported palladium catalyst(Ph-SBA-15-PPh_3-Pd) exhibi...A new method for the preparation of SBA-15-supported palladium catalyst for Heck reaction in supercritical carbon dioxide was presented.The newly formed SBA-15-supported palladium catalyst(Ph-SBA-15-PPh_3-Pd) exhibited high catalytic activity for the Heck reaction of 4-nitrobromobenzene with methyl acrylate.The catalyst can be reused several times without a loss of activity.展开更多
Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated d...Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated during the discharge process leads to energy waste and low energy utilization efficiency.In this work,an innovative DBD thermally-conducted catalysis(DBD-TCC)system,integrating high-frequency AC-DBD plasma and its generated thermal effects to activate the Co/SBA-15 catalyst,was employed for toluene removal.Specifically,Co/SBA-15 catalysts are closely positioned to the ground electrode of the plasma zone and can be heated and activated by the thermal effect when the voltage exceeds 10 k V.At12.4 k V,the temperature in the catalyst zone reached 261℃ in the DBD-TCC system,resulting in an increase in toluene degradation efficiency of 17%,CO_(2)selectivity of 21.2%,and energy efficiency of 27%,respectively,compared to the DBD system alone.In contrast,the DBD thermally-unconducted catalysis(DBD-TUC)system fails to enhance toluene degradation due to insufficient heat absorption and catalytic activation,highlighting the crucial role of AC-DBD generated heat in the activation of the catalyst.Furthermore,the degradation pathway and mechanism of toluene in the DBD-TCC system were hypothesized.This work is expected to provide an energy-efficient approach for high-frequency AC-DBD plasma removal of VOCs.展开更多
A novel surface ion implinted adsorbent [Co(II)-IIP] using polyethyleneimine (PEI) as function monomer and ordered mesoporous silica SBA-15 as support matrix was prepared for Co(II) analysis with high selectivit...A novel surface ion implinted adsorbent [Co(II)-IIP] using polyethyleneimine (PEI) as function monomer and ordered mesoporous silica SBA-15 as support matrix was prepared for Co(II) analysis with high selectivity. The prepared polymer was characterized by Fourier transmission infrared spectrometry, scanning electron microscopy, X-ray diffraction and nitrogen adsorption-desorption isotherm. Bath experiments of Co(II) adsorption onto Co(II)-IIP were performed under the optimum conditions. The experimental data were analyzed by pseudo-first-order and pseudo-second-order kinetic models. It was found that the pseudo-second-order model best correlated the kinetic data. The intraparticle diffusion and liquid film diffusion were applied to discuss the adsorption mechanism. The results showed that Co(II) adsorption onto IIP was controlled by the intraparticle diffusion mechanism, along with a considerable film diffusion contribution. Langmuir, Freundlich and Dubinin-Radushkevich adsorption models were applied to determine the isotherm parameters. Langmuir model fitted the experiment data well and the maximum calculated capacity of Co(II) reached 39.26 mg/g under room temperature. The thermodynamic data were indicative of the spontaneousness of the endothermic sorption process of Co(II) onto Co(II)-IIP. Co(II)-IIP showed high affinity and selectivity for template ion compared with non imprinted polymer (NIP).展开更多
A series of SBA-15-supported chromia-ceria catalysts with 3% Cr and 1%--5% Ce (3Cr-Ce/SBA) were pre- pared using an incipient wetness impregnation method. The catalysts were characterized by XRD, N2 adsorption, SEM,...A series of SBA-15-supported chromia-ceria catalysts with 3% Cr and 1%--5% Ce (3Cr-Ce/SBA) were pre- pared using an incipient wetness impregnation method. The catalysts were characterized by XRD, N2 adsorption, SEM, TEM-EDX, Raman spectroscopy, UV-vis spectroscopy, XPS and H2-TPR, and their catalytic performance for isobutane dehydrogenation with CO2 was tested. The addition of ceria to SBA-15-supported chromia improves the dispersion of chromium species. 3Cr-Ce/SBA catalysts are more active than SBA-15-supported chromia (3Cr/SBA), which is due to a higher concentration of Cr^6+ species present on the former catalysts. The 3Cr-3Ce/SBA catalyst shows the highest activity, which gives 35.4% isobutane conversion and 89.6% isobutene selectivity at 570℃ after 10 min of the reaction.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22178159,21878141)Key Research&Development Plan of Jiangsu Province(BE2019095)。
文摘Recently,cyclic(alkyl)(amino)carbenes(CAACs)have been widely used as ligands to enhance the catalytic reactivity of center metal,but the problem of recycling this expensive ligand remains to be solved.In this work,the heterogeneous SBA-15-CAAC-Ir catalyst was prepared by a covalent attachment method.and using SBA-15 as the carrier.It shows high reactivity for the hydrogenation of CO_(2) to formate.After immobilization,the ordered mesoporous structure and the overall rod-like morphology of the original SBA-15 have been preserved very well.Using SBA-15-CAAC-Ir as catalyst,up to 21050 TON can be obtained at 60℃.In addition,the catalyst can be separated easily by centrifugation,and the catalytic activity of SBA-15-CAAC-Ir can still remain very high after multiple cycles.
基金National Natural Science Foundation of China(No.20603005)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20090041110012) for their financial support
文摘A new method for the preparation of SBA-15-supported palladium catalyst for Heck reaction in supercritical carbon dioxide was presented.The newly formed SBA-15-supported palladium catalyst(Ph-SBA-15-PPh_3-Pd) exhibited high catalytic activity for the Heck reaction of 4-nitrobromobenzene with methyl acrylate.The catalyst can be reused several times without a loss of activity.
基金supported by National Natural Science Foundation of China(No.52177130)the Key Projects for Industrial Prospects and Core Technology Research in Suzhou City(No.SYC2022029)。
文摘Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated during the discharge process leads to energy waste and low energy utilization efficiency.In this work,an innovative DBD thermally-conducted catalysis(DBD-TCC)system,integrating high-frequency AC-DBD plasma and its generated thermal effects to activate the Co/SBA-15 catalyst,was employed for toluene removal.Specifically,Co/SBA-15 catalysts are closely positioned to the ground electrode of the plasma zone and can be heated and activated by the thermal effect when the voltage exceeds 10 k V.At12.4 k V,the temperature in the catalyst zone reached 261℃ in the DBD-TCC system,resulting in an increase in toluene degradation efficiency of 17%,CO_(2)selectivity of 21.2%,and energy efficiency of 27%,respectively,compared to the DBD system alone.In contrast,the DBD thermally-unconducted catalysis(DBD-TUC)system fails to enhance toluene degradation due to insufficient heat absorption and catalytic activation,highlighting the crucial role of AC-DBD generated heat in the activation of the catalyst.Furthermore,the degradation pathway and mechanism of toluene in the DBD-TCC system were hypothesized.This work is expected to provide an energy-efficient approach for high-frequency AC-DBD plasma removal of VOCs.
基金Project supported by the National Natural Science Foundation of China (No. 21077046), Ph. D. Programs Foundation of Ministry of Education of China (No. 20093227110015), Ph.D. Innovation Programs Foundation of Jiangsu University (No. CX09B 12XZ).
文摘A novel surface ion implinted adsorbent [Co(II)-IIP] using polyethyleneimine (PEI) as function monomer and ordered mesoporous silica SBA-15 as support matrix was prepared for Co(II) analysis with high selectivity. The prepared polymer was characterized by Fourier transmission infrared spectrometry, scanning electron microscopy, X-ray diffraction and nitrogen adsorption-desorption isotherm. Bath experiments of Co(II) adsorption onto Co(II)-IIP were performed under the optimum conditions. The experimental data were analyzed by pseudo-first-order and pseudo-second-order kinetic models. It was found that the pseudo-second-order model best correlated the kinetic data. The intraparticle diffusion and liquid film diffusion were applied to discuss the adsorption mechanism. The results showed that Co(II) adsorption onto IIP was controlled by the intraparticle diffusion mechanism, along with a considerable film diffusion contribution. Langmuir, Freundlich and Dubinin-Radushkevich adsorption models were applied to determine the isotherm parameters. Langmuir model fitted the experiment data well and the maximum calculated capacity of Co(II) reached 39.26 mg/g under room temperature. The thermodynamic data were indicative of the spontaneousness of the endothermic sorption process of Co(II) onto Co(II)-IIP. Co(II)-IIP showed high affinity and selectivity for template ion compared with non imprinted polymer (NIP).
文摘A series of SBA-15-supported chromia-ceria catalysts with 3% Cr and 1%--5% Ce (3Cr-Ce/SBA) were pre- pared using an incipient wetness impregnation method. The catalysts were characterized by XRD, N2 adsorption, SEM, TEM-EDX, Raman spectroscopy, UV-vis spectroscopy, XPS and H2-TPR, and their catalytic performance for isobutane dehydrogenation with CO2 was tested. The addition of ceria to SBA-15-supported chromia improves the dispersion of chromium species. 3Cr-Ce/SBA catalysts are more active than SBA-15-supported chromia (3Cr/SBA), which is due to a higher concentration of Cr^6+ species present on the former catalysts. The 3Cr-3Ce/SBA catalyst shows the highest activity, which gives 35.4% isobutane conversion and 89.6% isobutene selectivity at 570℃ after 10 min of the reaction.