The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ...The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.展开更多
This paper systematically reviews the current applications of various spatial information technologies in CO_(2)sequestration monitoring,analyzes the challenges faced by spatial information technologies in CO_(2)seque...This paper systematically reviews the current applications of various spatial information technologies in CO_(2)sequestration monitoring,analyzes the challenges faced by spatial information technologies in CO_(2)sequestration monitoring,and prospects the development of spatial information technologies in CO_(2)sequestration monitoring.Currently,the spatial information technologies applied in CO_(2)sequestration monitoring mainly include five categories:eddy covariance method,remote sensing technology,geographic information system,Internet of Things technology,and global navigation satellite system.These technologies are involved in three aspects:monitoring data acquisition,positioning and data transmission,and data management and decision support.Challenges faced by the spatial information technologies in CO_(2)sequestration monitoring include:selecting spatial information technologies that match different monitoring purposes,different platforms,and different monitoring sites;establishing effective data storage and computing capabilities to cope with the broad sources and large volumes of monitoring data;and promoting collaborative operations by interacting and validating spatial information technologies with mature monitoring technologies.In the future,it is necessary to establish methods and standards for designing spatial information technology monitoring schemes,develop collaborative application methods for cross-scale monitoring technologies,integrate spatial information technologies with artificial intelligence and high-performance computing technologies,and accelerate the application of spatial information technologies in carbon sequestration projects in China.展开更多
Currently,there is significant attention placed on the construction,management,and maintenance of large service bridges.Within the realm of bridge maintenance management,the utilization of detection and monitoring tec...Currently,there is significant attention placed on the construction,management,and maintenance of large service bridges.Within the realm of bridge maintenance management,the utilization of detection and monitoring technology is indispensable.By employing these technologies,we can effectively identify any structural defects within the bridge,promptly uncover unknown risks,proactively establish maintenance strategies,and prevent the rapid deterioration of bridge conditions.This article aims to explore the advantages of applying bridge monitoring and testing technology and to discuss various methods for implementing detection and monitoring technology throughout the construction,management,and maintenance phases of large bridges.Ultimately,this will contribute to ensuring the safe operation of large bridges.展开更多
As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its a...As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its application play an important role in ensuring the safety and extending the service life of bridges.This paper carries out in-depth research and analysis on the related technology of bridge structural health monitoring.Firstly,the existing monitoring technologies at home and abroad are sorted out,and the advantages and problems of various methods are compared and analyzed,including nondestructive testing,stress measurement,vibration characteristic identification,and other commonly used monitoring technologies.Secondly,the key technologies and equipment in the bridge health monitoring system,such as sensor technology,data acquisition,and processing technology,are introduced in detail.Finally,the development trend in the field of bridge health monitoring is prospected from both theoretical research and technical application.In the future,with the development of emerging technologies such as big data,cloud computing,and the Internet of Things,it is expected that bridge health monitoring with intelligent and systematic features will be more widely applied to provide a stronger guarantee for the safe and efficient operation of bridges.展开更多
Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2)...Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2) leakage may lead to seabed geological disasters and threaten the safety of marine engineering. Therefore, it is of great significance to study the safety monitoring technology of marine carbon sequestration.Zhanjiang is industrially developed and rich in carbon sources. Owing to the good physical properties and reservoirs and trap characteristics,Zhanjiang has huge storage potential. This paper explores the disaster mechanism associated with CO_(2) leakage in marine carbon sequestration areas. Based on the analysis of the development of Zhanjiang industry and relevant domestic monitoring technologies, several suggestions for safety monitoring of marine carbon sequestration are proposed: application of offshore aquaculture platforms, expansion and application of ocean observation networks, carbon sequestration safety monitoring and sensing system. Intended to build a comprehensive and multi-level safety monitoring system for marine carbon sequestration, the outcome of this study provides assistance for the development of marine carbon sequestration in China's offshore areas.展开更多
A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for...A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for calibration.Data from two underground operations with different drilling technology and different rock mass characteristics are considered,which generalizes the application of the methodology to different sites and ensures the full operational integration of MWD data analysis.Two approaches are followed for site-specific structural model building:a discontinuity index(DI)built from variations in MWD parameters,and a machine learning(ML)classifier as function of the drilling parameters and their variability.The prediction ability of the models is quantitatively assessed as the rate of recognition of discontinuities observed in borehole logs.Differences between the parameters involved in the models for each site,and differences in their weights,highlight the site-dependence of the resulting models.The ML approach offers better performance than the classical DI,with recognition rates in the range 89%to 96%.However,the simpler DI still yields fairly accurate results,with recognition rates 70%to 90%.These results validate the adaptive MWD-based methodology as an engineering solution to predict rock structural condition in underground mining operations.展开更多
Piezoelectric material,as one of the great potential materials,had attracted lots of attention all over the world due to its distinguish advantages.In this paper,the development of piezoelectric-based technology for a...Piezoelectric material,as one of the great potential materials,had attracted lots of attention all over the world due to its distinguish advantages.In this paper,the development of piezoelectric-based technology for application in the field of civil structural health monitoring(CSHM),was summarized and discussed.Based on the different identification mechanisms,the piezoelectric transducer-based technology can be divided into two main approaches as the active or passive sensing and detection methods.This paper summarized the development of these two approaches and discussed their applications in the area of civil structural health monitoring,such as structural and concrete engineering,bridge engineering,pipeline engineering,protection engineering for geological hazards and earthquake disasters,and so on.In addition,the electrical mechanical impedance(EMI)technique,as one of the active identification methods,was also detailly presented.Finally,its great potential for the piezoelectric-based technique was presented based on the detail discussion,especially in the areas of civil structural health monitoring.展开更多
Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases ...Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common.Recent advances in the Internet of Things(IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition,gaining significant attention in personalized healthcare.This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring.Relevant papers were extracted and analyzed using a systematic numerical review method,covering various aspects such as sports monitoring,disease detection,patient monitoring,and medical diagnosis.The review highlights the transformative impact of IoTenabled wearable devices in healthcare,facilitating real-time monitoring of vital signs,including blood pressure,temperature,oxygen levels,and heart rate.Results from the reviewed papers demonstrate high accuracy and efficiency in predicting health conditions,improving sports performance,enhancing patient care,and diagnosing diseases.The integration of IoT in wearable healthcare devices enables remote patient monitoring,personalized care,and efficient data transmission,ultimately transcending traditional boundaries of healthcare and leading to better patient outcomes.展开更多
[Objectives]To monitor the stability of open-pit coal mine slopes in real time and ensure the safety of coal mine production.[Methods]The automatic monitoring system of coal mine slope was explored in depth,and the co...[Objectives]To monitor the stability of open-pit coal mine slopes in real time and ensure the safety of coal mine production.[Methods]The automatic monitoring system of coal mine slope was explored in depth,and the core functions of the system were designed comprehensively.According to the design function of the automatic monitoring system,the slope automatic monitoring system was constructed.Besides,in accordance with the actual situation of the slope,the monitoring frequency of slopes was set scientifically,and the key indicators such as rainfall,deep displacement and surface displacement of the slopes were monitored in an all-round and multi-angle way.[Results]During the monitoring period,the overall condition of the slope remained good,and no landslides or other geological disasters occurred.At the same time,the overall rainfall in the slope area remained low.In terms of monitoring data,the horizontal displacement and settlement of the slopes increased first and then tended to be stable.Specifically,the maximum horizontal displacement during the monitoring period was 22.74 mm,while the maximum settlement was 18.65 mm.[Conclusions]The automatic slope monitoring system has obtained remarkable achievements in practical application.It not only improves the accuracy and efficiency of slope stability monitoring,but also provides valuable reference experience for similar projects.展开更多
A low-power environmental monitoring system based on WSN technology is proposed to effectively monitor the environmental status and ensure the healthy growth of greenhouse crops in the greenhouse. The system performs ...A low-power environmental monitoring system based on WSN technology is proposed to effectively monitor the environmental status and ensure the healthy growth of greenhouse crops in the greenhouse. The system performs dynamic mon- itoring on the environmental data of temperature, humidity, illumination, soil tempera- ture and humidity of the greenhouse, and it reduces the energy consumption by us- ing solar energy and lithium battery as the power supply mode and dynamic power management algorithm combined with improved routing protocol. Stable and reliable, the system could effectively monitor the key environmental factors in the green- house, making it of certain promotion value.展开更多
In China,operational in-situ marine monitoring is the primary means of directly obtaining hydrological,meteorological,and oceanographic environmental parameters across sea areas,and it is essential for applications su...In China,operational in-situ marine monitoring is the primary means of directly obtaining hydrological,meteorological,and oceanographic environmental parameters across sea areas,and it is essential for applications such as forecast of marine environment,prevention and mitigation of disaster,exploitation of marine resources,marine environmental protection,and management of transportation safety.In this paper,we summarise the composition,development courses,and present operational status of three systems of operational in-situ marine monitoring,namely coastal marine automated network station,ocean data buoy and voluntary observing ship measuring and reporting system.Additionally,we discuss the technical development in these in-situ systems and achievements in the key generic technologies along with future development trends.展开更多
Crack monitoring plays a great role in modern structural health monitoring, however, most of the conventional crack inspections have disadvantages in terms of the accuracy, expense, reliability, durability and level o...Crack monitoring plays a great role in modern structural health monitoring, however, most of the conventional crack inspections have disadvantages in terms of the accuracy, expense, reliability, durability and level of instrumentation required. Thus, development of a simple and reliable crack inspection technique that allows continuous monitoring has been desired. In this paper, electrical potential technique and modern surface technology are employed together to develop a new structural surface crack monitoring method. A special crack monitoring coating sensor based on electrical potential technique was deposited on the hot spot of the structure by modern surface technology. The sensor consists of three layers: the isolated layer, the sensing layer and the protective layer. The isolated layer is prepared by anodic oxidation technology, the sensing layer is made of ion plated copper, and the protective layer is made of silicone. The thickness of each layer is at micrometer magnitude. The electrical conductivity of the sensor is very stable, and the fatigue performance of the specimen with or without coating sensor is nearly unchanged. The crack monitoring experiment result shows that there are two sudden rises of the coating sensor electrical potential values, corresponding to different stages of the crack initiation and propagation. Since the width of the surface coating sensor is only 0.5 mm, this crack monitoring sensor can detect the propagation of cracks less than 0.5 mm long. The method proposed takes the simplicity of electrical potential technique and can monitor surface crack of nearly all kinds of structures precisely. The results of this paper may form the basis of a new crack monitoring system.展开更多
On the basis of the massive amount of published literature and the long-term practice of our research group in the field of prevention and control of rockburst,the research progress and shortcomings in understanding t...On the basis of the massive amount of published literature and the long-term practice of our research group in the field of prevention and control of rockburst,the research progress and shortcomings in understanding the rockburst phenomenon have been comprehensively in-vestigated.This study focuses on the occurrence mechanism and monitoring and early warning technology for rockburst in coal mines.Results showed that the prevention and control of rockburst had made significant progress.However,with the increasing mining depth,several unre-solved concerns remain challenging.From the in-depth research and analysis,it can be inferred that rockburst disasters involve three main problems,i.e.,the induction factors are complicated,the mechanism is still unclear,and the accuracy of the monitoring equipment and multi-source stereo monitoring technology is insufficient.The monitoring and warning standards of rockburst need to be further clarified and im-proved.Combined with the Internet of Things,cloud computing,and big data,a study of the trend of rockburst needs to be conducted.Further-more,the mechanism of multiphase and multi-field coupling induced by rockburst on a large scale needs to be explored.A multisystem and multiparameter integrated monitoring and early warning system and remote monitoring cloud platform for rockburst should be explored and developed.High-reliability sensing technology and equipment and perfect monitoring and early warning standards are considered to be the de-velopment direction of rockburst in the future.This research will help experts and technicians adopt effective measures for controlling rock-burst disasters.展开更多
Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and i...Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and international researchers have made significant advances in the areas of theory and methods,technology and systems,and ground experiments and flight tests.These advances have led to the development of OFS technology from the laboratory research stage to the engineering application stage.However,a few problems encountered in practical applications limit the wider application and further development of this technology,and thus urgently require solutions.This paper reviews the history of research on the deformation monitoring of flight vehicles.It examines various aspects of OFS-based deformation monitoring including the main varieties of OFS technology,technical advantages and disadvantages,suitability in aerospace applications,deformation reconstruction algorithms,and typical applications.This paper points out the key unresolved problems and the main evolution paradigms of engineering applications.It further discusses future development directions from the perspectives of an evolution paradigm,standardization,new materials,intelligentization,and collaboration.展开更多
The health monitoring for large-scale structures need to resolve a large number of difficulties,such as the data transmission and distributing information handling.To solve these problems,the technology of multi-agent...The health monitoring for large-scale structures need to resolve a large number of difficulties,such as the data transmission and distributing information handling.To solve these problems,the technology of multi-agent is a good candidate to be used in the field of structural health monitoring.A structural health monitoring system architecture based on multi-agent technology is proposed.The measurement system for aircraft airfoil is designed with FBG,strain gage,and corresponding signal processing circuit.The experiment to determine the location of the concentrate loading on the structure is carried on with the system combined with technologies of pattern recognition and multi-agent.The results show that the system can locate the concentrate loading of the aircraft airfoil at the accuracy of 91.2%.展开更多
Attempted to conduct a dynamic monitoring research on coal mining subsidence in western mining areas by using the method of combining D-InSAR and GPS technology. The observation points were installed on the main secti...Attempted to conduct a dynamic monitoring research on coal mining subsidence in western mining areas by using the method of combining D-InSAR and GPS technology. The observation points were installed on the main section and the three-dimensional coordinates of the points were measured by using the method of dynamic differential GPS. Meanwhile, the radar images of this subsidence area were processed by using the method of interferometry with daris software, and the interferogram of the subsidence area was obtained. Through this study, the GPS monitoring data and the InSAR deformation data were integrated and the dynamic subsidence contours of the experimental area were obtained. GPS/InSAR fusion technology provides a new technological means for large-scale dynamic monitoring of coal mining subsidence in western mountainous mining areas and shows good application prospects in coal mining subsidence monitoring and disaster warning.展开更多
The safety and reliability of mechatronics systems,particularly the high-end,large and key mechatronics equipment in service,can strongly influence on production efficiency,personnel safety,resources and environment.B...The safety and reliability of mechatronics systems,particularly the high-end,large and key mechatronics equipment in service,can strongly influence on production efficiency,personnel safety,resources and environment.Based on the demands of development of modern industries and technologies such as international industry 4.0,Made-in-China 2025 and Internet + and so on,this paper started from revealing the regularity of evolution of running state of equipment and the methods of signal processing of low signal noise ratio,proposed the key information technology of state monitoring and earlyfault-warning for equipment,put forward the typical technical line and major technical content,introduced the application of the technology to realize modern predictive maintenance of equipment and introduced the development of relevant safety monitoring instruments.The technology will play an important role in ensuring the safety of equipment in service,preventing accidents and realizing scientific maintenance.展开更多
Hydraulic fracturing technology is an important means of shale gas development,and microseismic monitoring is the key technology of fracturing effect evaluation.In this study,hydraulic fracturing and microseismic moni...Hydraulic fracturing technology is an important means of shale gas development,and microseismic monitoring is the key technology of fracturing effect evaluation.In this study,hydraulic fracturing and microseismic monitoring were simultaneously conducted in the Eyangye 2HF well(hereinafter referred to as EYY2HF well).The target stratum of this well is the second member of the Doushantuo Formation of the Sinian System,which is the oldest stratum of horizontal shale gas wells in the world.A total of 4341 microseismic fracturing events were identified,and 23 fracturing stages of the well were defined.The fluctuation of the number of events showed a repeating“high-low”pattern,and the average energy of these events showed minimal differences.These findings indicate that the water pressure required for the reconstruction of the EYY2HF well is appropriate.The main body of the fracture network extended from northwest to southeast,consistent with the interpretation of regional geological and seismic data.The stimulated rock volumes showed a linear increase with the increase of the fracturing stage.Some technological measures,such as quick lift displacement,quick lift sand ratio,and pump stop for secondary sand addition,were adopted during fracturing to increase the complexity of the fracture network.Microseismic fracture monitoring of the well achieved expected eff ects and guided real-time fracturing operations and fracturing eff ect evaluation.展开更多
In recent years environmental and sustainability concerns have impacted the global chemical industry and instituted a rush to produce products from renewable raw materials.This dynamic,complex and turbulent organizati...In recent years environmental and sustainability concerns have impacted the global chemical industry and instituted a rush to produce products from renewable raw materials.This dynamic,complex and turbulent organizational scenario,around themes touching on the issue of sustainable development model,was created involving a large number of different actors:chemical/petrochemical industries,agroindustry companies,oil/gas companies,brand owners and end users,biotechnology startups,governments,universities and society.This paper proposed the application of a structured and dynamic method of technological prediction for biopolymers in three levels:systematic monitoring process,relational database and the“alive”Technology Roadmapping visualization tool.The main objective is to identify strategic actions,business models,the latest´s technologies in development,as well as trends in the field of biopolymers in order to support companies on position themselves in this competitive scenario.Furthermore,companies,universities,government agencies and institutions could apply this dynamic and alive methodology to indeed access innovation opportunities,challenges and threats for different industrial segments and to provide dynamic knowledge management collaborating to their strategy including a database crossing for the all organization.展开更多
In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamicall...In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamically quantitatively described its fractal laws,based on the high-precision microseismic monitoring method and the nonlinear Fractal Geometry Theory.The results show that:the overburden rock mining-induced fissure fractal dimension experiences two periodic change processes with the coal face advance,namely a Small→ Big→ Small process,which tends to be stable;the functional relationship between the extraction step distance and the overburden rock mining-induced fissure fractal dimension is a cubic curve.The results suggest that the fractal dimension reflects the evolution characteristics of the overburden rock mining-induced fissure,which can be used as an evaluation index of the stability of the overburden rock strata,and it provides theoretical guidance for stability analysis of the overburden rock strata,goaf roof control and the support movements in the mining face.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42264004,42274033,and 41904012)the Open Fund of Hubei Luojia Laboratory(Grant Nos.2201000049 and 230100018)+2 种基金the Guangxi Universities’1,000 Young and Middle-aged Backbone Teachers Training Program,the Fundamental Research Funds for Central Universities(Grant No.2042022kf1197)the Natural Science Foundation of Hubei(Grant No.2020CFB282)the China Postdoctoral Science Foundation(Grant Nos.2020T130482,2018M630879)。
文摘The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.
基金Supported by the CNPC Science and Technology Major Project(2021ZZ01-05).
文摘This paper systematically reviews the current applications of various spatial information technologies in CO_(2)sequestration monitoring,analyzes the challenges faced by spatial information technologies in CO_(2)sequestration monitoring,and prospects the development of spatial information technologies in CO_(2)sequestration monitoring.Currently,the spatial information technologies applied in CO_(2)sequestration monitoring mainly include five categories:eddy covariance method,remote sensing technology,geographic information system,Internet of Things technology,and global navigation satellite system.These technologies are involved in three aspects:monitoring data acquisition,positioning and data transmission,and data management and decision support.Challenges faced by the spatial information technologies in CO_(2)sequestration monitoring include:selecting spatial information technologies that match different monitoring purposes,different platforms,and different monitoring sites;establishing effective data storage and computing capabilities to cope with the broad sources and large volumes of monitoring data;and promoting collaborative operations by interacting and validating spatial information technologies with mature monitoring technologies.In the future,it is necessary to establish methods and standards for designing spatial information technology monitoring schemes,develop collaborative application methods for cross-scale monitoring technologies,integrate spatial information technologies with artificial intelligence and high-performance computing technologies,and accelerate the application of spatial information technologies in carbon sequestration projects in China.
文摘Currently,there is significant attention placed on the construction,management,and maintenance of large service bridges.Within the realm of bridge maintenance management,the utilization of detection and monitoring technology is indispensable.By employing these technologies,we can effectively identify any structural defects within the bridge,promptly uncover unknown risks,proactively establish maintenance strategies,and prevent the rapid deterioration of bridge conditions.This article aims to explore the advantages of applying bridge monitoring and testing technology and to discuss various methods for implementing detection and monitoring technology throughout the construction,management,and maintenance phases of large bridges.Ultimately,this will contribute to ensuring the safe operation of large bridges.
文摘As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its application play an important role in ensuring the safety and extending the service life of bridges.This paper carries out in-depth research and analysis on the related technology of bridge structural health monitoring.Firstly,the existing monitoring technologies at home and abroad are sorted out,and the advantages and problems of various methods are compared and analyzed,including nondestructive testing,stress measurement,vibration characteristic identification,and other commonly used monitoring technologies.Secondly,the key technologies and equipment in the bridge health monitoring system,such as sensor technology,data acquisition,and processing technology,are introduced in detail.Finally,the development trend in the field of bridge health monitoring is prospected from both theoretical research and technical application.In the future,with the development of emerging technologies such as big data,cloud computing,and the Internet of Things,it is expected that bridge health monitoring with intelligent and systematic features will be more widely applied to provide a stronger guarantee for the safe and efficient operation of bridges.
文摘Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2) leakage may lead to seabed geological disasters and threaten the safety of marine engineering. Therefore, it is of great significance to study the safety monitoring technology of marine carbon sequestration.Zhanjiang is industrially developed and rich in carbon sources. Owing to the good physical properties and reservoirs and trap characteristics,Zhanjiang has huge storage potential. This paper explores the disaster mechanism associated with CO_(2) leakage in marine carbon sequestration areas. Based on the analysis of the development of Zhanjiang industry and relevant domestic monitoring technologies, several suggestions for safety monitoring of marine carbon sequestration are proposed: application of offshore aquaculture platforms, expansion and application of ocean observation networks, carbon sequestration safety monitoring and sensing system. Intended to build a comprehensive and multi-level safety monitoring system for marine carbon sequestration, the outcome of this study provides assistance for the development of marine carbon sequestration in China's offshore areas.
基金conducted under the illu MINEation project, funded by the European Union’s Horizon 2020 research and innovation program under grant agreement (No. 869379)supported by the China Scholarship Council (No. 202006370006)
文摘A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for calibration.Data from two underground operations with different drilling technology and different rock mass characteristics are considered,which generalizes the application of the methodology to different sites and ensures the full operational integration of MWD data analysis.Two approaches are followed for site-specific structural model building:a discontinuity index(DI)built from variations in MWD parameters,and a machine learning(ML)classifier as function of the drilling parameters and their variability.The prediction ability of the models is quantitatively assessed as the rate of recognition of discontinuities observed in borehole logs.Differences between the parameters involved in the models for each site,and differences in their weights,highlight the site-dependence of the resulting models.The ML approach offers better performance than the classical DI,with recognition rates in the range 89%to 96%.However,the simpler DI still yields fairly accurate results,with recognition rates 70%to 90%.These results validate the adaptive MWD-based methodology as an engineering solution to predict rock structural condition in underground mining operations.
基金the National Natural Science Funding of China(No.51878628,51708520).
文摘Piezoelectric material,as one of the great potential materials,had attracted lots of attention all over the world due to its distinguish advantages.In this paper,the development of piezoelectric-based technology for application in the field of civil structural health monitoring(CSHM),was summarized and discussed.Based on the different identification mechanisms,the piezoelectric transducer-based technology can be divided into two main approaches as the active or passive sensing and detection methods.This paper summarized the development of these two approaches and discussed their applications in the area of civil structural health monitoring,such as structural and concrete engineering,bridge engineering,pipeline engineering,protection engineering for geological hazards and earthquake disasters,and so on.In addition,the electrical mechanical impedance(EMI)technique,as one of the active identification methods,was also detailly presented.Finally,its great potential for the piezoelectric-based technique was presented based on the detail discussion,especially in the areas of civil structural health monitoring.
文摘Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common.Recent advances in the Internet of Things(IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition,gaining significant attention in personalized healthcare.This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring.Relevant papers were extracted and analyzed using a systematic numerical review method,covering various aspects such as sports monitoring,disease detection,patient monitoring,and medical diagnosis.The review highlights the transformative impact of IoTenabled wearable devices in healthcare,facilitating real-time monitoring of vital signs,including blood pressure,temperature,oxygen levels,and heart rate.Results from the reviewed papers demonstrate high accuracy and efficiency in predicting health conditions,improving sports performance,enhancing patient care,and diagnosing diseases.The integration of IoT in wearable healthcare devices enables remote patient monitoring,personalized care,and efficient data transmission,ultimately transcending traditional boundaries of healthcare and leading to better patient outcomes.
文摘[Objectives]To monitor the stability of open-pit coal mine slopes in real time and ensure the safety of coal mine production.[Methods]The automatic monitoring system of coal mine slope was explored in depth,and the core functions of the system were designed comprehensively.According to the design function of the automatic monitoring system,the slope automatic monitoring system was constructed.Besides,in accordance with the actual situation of the slope,the monitoring frequency of slopes was set scientifically,and the key indicators such as rainfall,deep displacement and surface displacement of the slopes were monitored in an all-round and multi-angle way.[Results]During the monitoring period,the overall condition of the slope remained good,and no landslides or other geological disasters occurred.At the same time,the overall rainfall in the slope area remained low.In terms of monitoring data,the horizontal displacement and settlement of the slopes increased first and then tended to be stable.Specifically,the maximum horizontal displacement during the monitoring period was 22.74 mm,while the maximum settlement was 18.65 mm.[Conclusions]The automatic slope monitoring system has obtained remarkable achievements in practical application.It not only improves the accuracy and efficiency of slope stability monitoring,but also provides valuable reference experience for similar projects.
基金Supported by the Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(14)2108&CX(13)5066)~~
文摘A low-power environmental monitoring system based on WSN technology is proposed to effectively monitor the environmental status and ensure the healthy growth of greenhouse crops in the greenhouse. The system performs dynamic mon- itoring on the environmental data of temperature, humidity, illumination, soil tempera- ture and humidity of the greenhouse, and it reduces the energy consumption by us- ing solar energy and lithium battery as the power supply mode and dynamic power management algorithm combined with improved routing protocol. Stable and reliable, the system could effectively monitor the key environmental factors in the green- house, making it of certain promotion value.
基金The National Key Research and Development Program of China under contract No.2022YFC3104200the Key R&D Program of Shandong Province,China under contract No.2023ZLYS01+3 种基金the Consulting and Research Project of the Chinese Academy of Engineering under contract Nos 2022-XY-21,2022-DFZD-35,2023-XBZD-09 and 2021-XBZD-13the Major Innovation Special Project of Qilu University of Technology(Shandong Academy of Sciences),Science Education Industry Integration Pilot Project under contract No.2023HYZX01Special Funds for“Mount Taishan Scholars”Construction Projectthe Special Funds of Laoshan Laboratory.
文摘In China,operational in-situ marine monitoring is the primary means of directly obtaining hydrological,meteorological,and oceanographic environmental parameters across sea areas,and it is essential for applications such as forecast of marine environment,prevention and mitigation of disaster,exploitation of marine resources,marine environmental protection,and management of transportation safety.In this paper,we summarise the composition,development courses,and present operational status of three systems of operational in-situ marine monitoring,namely coastal marine automated network station,ocean data buoy and voluntary observing ship measuring and reporting system.Additionally,we discuss the technical development in these in-situ systems and achievements in the key generic technologies along with future development trends.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA03Z103)Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of China (Grant No. [2006]331)
文摘Crack monitoring plays a great role in modern structural health monitoring, however, most of the conventional crack inspections have disadvantages in terms of the accuracy, expense, reliability, durability and level of instrumentation required. Thus, development of a simple and reliable crack inspection technique that allows continuous monitoring has been desired. In this paper, electrical potential technique and modern surface technology are employed together to develop a new structural surface crack monitoring method. A special crack monitoring coating sensor based on electrical potential technique was deposited on the hot spot of the structure by modern surface technology. The sensor consists of three layers: the isolated layer, the sensing layer and the protective layer. The isolated layer is prepared by anodic oxidation technology, the sensing layer is made of ion plated copper, and the protective layer is made of silicone. The thickness of each layer is at micrometer magnitude. The electrical conductivity of the sensor is very stable, and the fatigue performance of the specimen with or without coating sensor is nearly unchanged. The crack monitoring experiment result shows that there are two sudden rises of the coating sensor electrical potential values, corresponding to different stages of the crack initiation and propagation. Since the width of the surface coating sensor is only 0.5 mm, this crack monitoring sensor can detect the propagation of cracks less than 0.5 mm long. The method proposed takes the simplicity of electrical potential technique and can monitor surface crack of nearly all kinds of structures precisely. The results of this paper may form the basis of a new crack monitoring system.
基金This work was financially supported by the National Nat-ural Science Foundation of China(Nos.51634001,51774023,and 51904019).
文摘On the basis of the massive amount of published literature and the long-term practice of our research group in the field of prevention and control of rockburst,the research progress and shortcomings in understanding the rockburst phenomenon have been comprehensively in-vestigated.This study focuses on the occurrence mechanism and monitoring and early warning technology for rockburst in coal mines.Results showed that the prevention and control of rockburst had made significant progress.However,with the increasing mining depth,several unre-solved concerns remain challenging.From the in-depth research and analysis,it can be inferred that rockburst disasters involve three main problems,i.e.,the induction factors are complicated,the mechanism is still unclear,and the accuracy of the monitoring equipment and multi-source stereo monitoring technology is insufficient.The monitoring and warning standards of rockburst need to be further clarified and im-proved.Combined with the Internet of Things,cloud computing,and big data,a study of the trend of rockburst needs to be conducted.Further-more,the mechanism of multiphase and multi-field coupling induced by rockburst on a large scale needs to be explored.A multisystem and multiparameter integrated monitoring and early warning system and remote monitoring cloud platform for rockburst should be explored and developed.High-reliability sensing technology and equipment and perfect monitoring and early warning standards are considered to be the de-velopment direction of rockburst in the future.This research will help experts and technicians adopt effective measures for controlling rock-burst disasters.
基金funded by the National Natural Science Foundation of China(51705024,51535002,51675053,61903041,61903042,and 61903041)the National Key Research and Development Program of China(2016YFF0101801)+4 种基金the National Hightech Research and Development Program of China(2015AA042308)the Innovative Equipment Pre-Research Key Fund Project(6140414030101)the Manned Space Pre-Research Project(20184112043)the Beijing Municipal Natural Science Foundation(F7202017 and 4204101)the Beijing Nova Program of Science and Technology(Z191100001119052)。
文摘Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and international researchers have made significant advances in the areas of theory and methods,technology and systems,and ground experiments and flight tests.These advances have led to the development of OFS technology from the laboratory research stage to the engineering application stage.However,a few problems encountered in practical applications limit the wider application and further development of this technology,and thus urgently require solutions.This paper reviews the history of research on the deformation monitoring of flight vehicles.It examines various aspects of OFS-based deformation monitoring including the main varieties of OFS technology,technical advantages and disadvantages,suitability in aerospace applications,deformation reconstruction algorithms,and typical applications.This paper points out the key unresolved problems and the main evolution paradigms of engineering applications.It further discusses future development directions from the perspectives of an evolution paradigm,standardization,new materials,intelligentization,and collaboration.
基金supported by the Key Program of the National Science Foundation of China(50830201)Aviation Research Foundation(20060952)+1 种基金the National High Technology Research and Development of China(2007AA03Z117)the Natural Science Foundation of Jiansu Province(08kjd560009)
文摘The health monitoring for large-scale structures need to resolve a large number of difficulties,such as the data transmission and distributing information handling.To solve these problems,the technology of multi-agent is a good candidate to be used in the field of structural health monitoring.A structural health monitoring system architecture based on multi-agent technology is proposed.The measurement system for aircraft airfoil is designed with FBG,strain gage,and corresponding signal processing circuit.The experiment to determine the location of the concentrate loading on the structure is carried on with the system combined with technologies of pattern recognition and multi-agent.The results show that the system can locate the concentrate loading of the aircraft airfoil at the accuracy of 91.2%.
基金Supported by the Natural Science Foundation of Shannxi Province
文摘Attempted to conduct a dynamic monitoring research on coal mining subsidence in western mining areas by using the method of combining D-InSAR and GPS technology. The observation points were installed on the main section and the three-dimensional coordinates of the points were measured by using the method of dynamic differential GPS. Meanwhile, the radar images of this subsidence area were processed by using the method of interferometry with daris software, and the interferogram of the subsidence area was obtained. Through this study, the GPS monitoring data and the InSAR deformation data were integrated and the dynamic subsidence contours of the experimental area were obtained. GPS/InSAR fusion technology provides a new technological means for large-scale dynamic monitoring of coal mining subsidence in western mountainous mining areas and shows good application prospects in coal mining subsidence monitoring and disaster warning.
基金supported by National Natural Science Foundation of China(No.51275052)Beijing Natural Science Foundation(No.3131002)
文摘The safety and reliability of mechatronics systems,particularly the high-end,large and key mechatronics equipment in service,can strongly influence on production efficiency,personnel safety,resources and environment.Based on the demands of development of modern industries and technologies such as international industry 4.0,Made-in-China 2025 and Internet + and so on,this paper started from revealing the regularity of evolution of running state of equipment and the methods of signal processing of low signal noise ratio,proposed the key information technology of state monitoring and earlyfault-warning for equipment,put forward the typical technical line and major technical content,introduced the application of the technology to realize modern predictive maintenance of equipment and introduced the development of relevant safety monitoring instruments.The technology will play an important role in ensuring the safety of equipment in service,preventing accidents and realizing scientific maintenance.
基金National key R&D plan(2016YFC060110605)National major projects(2016ZX05034004-005)。
文摘Hydraulic fracturing technology is an important means of shale gas development,and microseismic monitoring is the key technology of fracturing effect evaluation.In this study,hydraulic fracturing and microseismic monitoring were simultaneously conducted in the Eyangye 2HF well(hereinafter referred to as EYY2HF well).The target stratum of this well is the second member of the Doushantuo Formation of the Sinian System,which is the oldest stratum of horizontal shale gas wells in the world.A total of 4341 microseismic fracturing events were identified,and 23 fracturing stages of the well were defined.The fluctuation of the number of events showed a repeating“high-low”pattern,and the average energy of these events showed minimal differences.These findings indicate that the water pressure required for the reconstruction of the EYY2HF well is appropriate.The main body of the fracture network extended from northwest to southeast,consistent with the interpretation of regional geological and seismic data.The stimulated rock volumes showed a linear increase with the increase of the fracturing stage.Some technological measures,such as quick lift displacement,quick lift sand ratio,and pump stop for secondary sand addition,were adopted during fracturing to increase the complexity of the fracture network.Microseismic fracture monitoring of the well achieved expected eff ects and guided real-time fracturing operations and fracturing eff ect evaluation.
文摘In recent years environmental and sustainability concerns have impacted the global chemical industry and instituted a rush to produce products from renewable raw materials.This dynamic,complex and turbulent organizational scenario,around themes touching on the issue of sustainable development model,was created involving a large number of different actors:chemical/petrochemical industries,agroindustry companies,oil/gas companies,brand owners and end users,biotechnology startups,governments,universities and society.This paper proposed the application of a structured and dynamic method of technological prediction for biopolymers in three levels:systematic monitoring process,relational database and the“alive”Technology Roadmapping visualization tool.The main objective is to identify strategic actions,business models,the latest´s technologies in development,as well as trends in the field of biopolymers in order to support companies on position themselves in this competitive scenario.Furthermore,companies,universities,government agencies and institutions could apply this dynamic and alive methodology to indeed access innovation opportunities,challenges and threats for different industrial segments and to provide dynamic knowledge management collaborating to their strategy including a database crossing for the all organization.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.51304154)the Natural Science Foundation Anhui Province(No.1408085MKL92)
文摘In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamically quantitatively described its fractal laws,based on the high-precision microseismic monitoring method and the nonlinear Fractal Geometry Theory.The results show that:the overburden rock mining-induced fissure fractal dimension experiences two periodic change processes with the coal face advance,namely a Small→ Big→ Small process,which tends to be stable;the functional relationship between the extraction step distance and the overburden rock mining-induced fissure fractal dimension is a cubic curve.The results suggest that the fractal dimension reflects the evolution characteristics of the overburden rock mining-induced fissure,which can be used as an evaluation index of the stability of the overburden rock strata,and it provides theoretical guidance for stability analysis of the overburden rock strata,goaf roof control and the support movements in the mining face.